CRL SOP #: GEN010 Revision #: 9.1 Date: April 1, 2010 Page #: 29 of 31

	CRL Method #: MS0 26 rex 7.0 CRL Sample Batch Number(s) B112	021		
	CRL Work Order Number(s) 111200	1		
	Site Name: Blue Island Phenols			
	ESAT TDF Number (For ESAT Da	ta Packa	ages)	
	N 10			
	Analyst/Date (QC1): Danielle Kleinmaier 121	30/11		
	Analyst/Date Secondary Reviewer/Date (QC1): Donelle Kleinmaier 121 (QC2): Wayne J. Whippe	Jan 4 20	72	
NOTE	: Please check Y for YES, NA for Not Applicable and X for NO. If X, please	provide	your con	ıments in
the cor	mments section.			
		Appr	ovals	
		QC1	QC2	
I.	SAMPLE QC			
	Sample Preservation - work order	Y	11	
1.	Were the samples received properly preserved?		1	
	Total Port Chall Friedrand Factor			
	<u>Instrument Performance Check</u> – Enviroforms Form 5, tune evaluation			
2	report, tailing factor reports, raw data	Y	y	
2. 3.	Does the instrument performance check meet the SOP criteria? Is the report accurate? Are the associated samples properly listed?	V	4	
4.	Are all samples analyzed within the 12- or 24-hour clock?	→		
·*.	Are an samples analyzed within the 12- of 24-hour clock:		7	
	Initial Calibration (IC) - RRF report, initial calibration report			
5.	Does the IC QC meet the SOP criteria?	Y	9	
6.	Calculate both a RSD and a RRF or verify a regression fit. Is it accurate:	Y	Ce	
			9	
	Continuing Calibration (CC) - evaluate continuing calibration report	- /		20
7.	Does the CC QC meet the SOP criteria?	Y	4	
8.	Calculate a %D. Is the %D accurate?	Y	4	
	Internal Standards (IS) - Enviroforms Form 8, internal standard area an	d		
5	retention time comparison	1/	()	
9.	Samples met IS area requirements? If not, sample data properly qualified		1	
10.	Samples met IS time requirements? If not, sample data properly qualified	1?	4	
	Method Blank Summary - Enviroforms Form 4, raw data, bench sheet			
11.	Is the Method Blank Summary header correct?	Y .	4	
12.	Are the associated samples properly listed?	Y	d.	
13.	Are sample data properly qualified if the blank conc is above the reporting		7	
13.	limit and within a factor of 10 of sample concentrations, or above the MD		V	
	and within a factor of 5 of sample concentrations?	Y	1,	
	and within a factor of 5 of sample concentrations.		1	
	MS/MSD or LCS/LCSD - raw data, LIMS reports, Data Entry Table			
14.	Are MS/MSD and LCS/LCSD recoveries acceptable? If not, data			
	qualified?	Y	4	
15.	Are reported concentrations in agreement with the raw data?	Y	Vel	
			1	

Date: April 1, 2010 Page #: 30 of 31 Approvals OC1 QC2 Surrogate Recoveries - raw data, LIMS reports, Data Entry Table 16. Are surrogate recoveries acceptable? If not, data qualified? 17. Are reported concentrations and percent recovery data in agreement with the quantitation reports and QC forms? II. **QUANTITATION REPORTS and TC & TIC RESULTS of SAMPLES** 1. Are draft LIMS reports present for all field samples and QC samples, if applicable? 2. Are reported results for detects and non-detects accurate? 3. Did mass spectral data support all reported TC and TIC data? 4. Are the following LIMS data qualifiers used, when needed: J, K, L, MI, N, NJ, R and U? Are final LIMS reports present for all field samples and lab blanks? (Note: CRL keeps the original FINAL report, and the client gets a copy) 6. Are final LIMS reports and complete data packages present in duplicate for enforcement cases? III. MANUAL INTEGRATION AUDIT (See QMP Appendix 2 for CRL manual integration policy and procedures) 1. Are graphic printouts submitted showing all manual integrations before and after the manual integrations? IV. MISCELLANEOUS 1. Are the following documents submitted with the data package, when available: sample analysis request sheets/COC forms, sample tags, sequence files identifying sample data files used for reporting, completed sample prep/clean-up sheets, and data not used? 2. Are the following documents filed in proper binders: GC/MS autotune reports, daily manual tune or mass axis calibration reports, DFTPP tune reports, calibration reports, and sample sequences? 3. Is the bench sheet complete? Are the LIMS IDs for all spiking solutions and calibration standards and all solvent lot numbers used in the analysis documented in the package? 4. Is a printout of the work order(s) included? V. **CASE NARRATIVE** 1. Is the case narrative accurate? Are QC outliers explained? 2. Are the narrative, report, and supporting data files backed up to R5CRL?

17. Data Review Checklist (Cont'd)

CRL SOP #: GEN010 Revision #: 9.1

CRL SOP #: GEN010 Revision #: 9.1 Date: April 1, 2010 Page #: 31 of 31

Please make sure the following changes to the case narrative have been made:

- No longer include sample identifications or instrument designations; these are documented in the raw data and LIMS reports.
- Include the # of samples done, the work order number(s) and the name of the survey. Do not include 2. the name of any other survey in the narrative. If you need to refer to another group of samples, use the work order number.
- Type the path for data storage. Include the path in a note to the file or on the review checklist. Hand 3. printed paths are very difficult to read. Please do not write them.
- Make a positive statement that the holding times were met. State if there were any exceptions. 4.
- Discuss the preparation steps only if there are options. If the preparation is part of the SOP, no

		Appi	rovals	
		QC1	QC2	
I.	DATA CUSTODY and TIME TRACKING			
	(For ESAT Data Packages Only)			
	Are the data set custody transfer and time tracking sheet present and accurate?	NA		
	present and accurate;	14/	-	1
I.	COMMENTS			
_				-
_		- 3	-	_
eci	ify the path for data storage (see GEN002 for requirements)			_

xan	ify the path for data storage (see GEN002 for requirements) nple of R5CRL Data Path; 204.46.24.26\R5CRL\VOL1\EPA-GCMS\	'analysis''\'' worl		MANAGE
xan	ify the path for data storage (see GEN002 for requirements) nple of R5CRL Data Path; 204.46.24.26\R5CRL\VOL1\EPA-GCMS\	'analysis''\'' worl		***************************************
kan	ify the path for data storage (see GEN002 for requirements) nple of R5CRL Data Path; 204.46.24.26\R5CRL\VOL1\EPA-GCMS\	'analysis''\'' worl	corder ²² \	
th:	ify the path for data storage (see GEN002 for requirements) nple of R5CRL Data Path: 204.46.24.26\R5CRL\VOL1\EPA-GCMS\(^2\) : MS\SVOA\ZOI\\\ 11\ZOO\\LLE\\ Iyst Signature: \textstyle \t	'analysis''\'' worl	corder ²² \	
can oth: onal	ify the path for data storage (see GEN002 for requirements) nple of R5CRL Data Path: 204.46.24.26\R5CRL\VOL1\EPA-GCMS\(^2\) : MS\SVOA\ZOII\\ 11\ZOO\LLE\\ Iyst Signature: \textstyle \text{Cinman}\\ Package Review approval for release	² analysis"\"worl Date:	corder²²\	
xam ath: ata All	ify the path for data storage (see GEN002 for requirements) nple of R5CRL Data Path: 204.46.24.26\R5CRL\VOL1\EPA-GCMS\(^2\) : MS\SVOA\ZOI\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Pate: 12	c order ²⁷ \	ion of
xan ath: Anal ata All evie	ify the path for data storage (see GEN002 for requirements) Inple of R5CRL Data Path: 204.46.24.26\R5CRL\VOL1\EPA-GCMS\(^2\) : MS\SVOA\ZOI\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Pate: 12 een resolved to e and supports	the satisfact	ion of
xan ath: Anal ata All evie	ify the path for data storage (see GEN002 for requirements) nple of R5CRL Data Path: 204.46.24.26\R5CRL\VOL1\EPA-GCMS\(^2\) : MS\SVOA\ZOI\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Pate: 12 een resolved to e and supports perating procedur	the satisfact the reported res (SOPs)."	ion of results
Anal Anal Anal All evie	ify the path for data storage (see GEN002 for requirements) Inple of R5CRL Data Path: 204.46.24.26\R5CRL\VOL1\EPA-GCMS\(^2\) : MS\SVOA\ZOI\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Pate: 12 een resolved to e and supports	the satisfact the reported res (SOPs)."	ion of results

	· ·	1.5						
•			•					
		•	•					
			1				-	
				·				
•								
				·				
					•			
		-						
	4	•						
						•		
	•	-		. •				
•								
			4					
•						•		
•			•					
							^	
	•		•					
		÷ .						
			-				•	
•								
•								

1/4/2012

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 5 CHICAGO REGIONAL LABORATORY 536 SOUTH CLARK STREET **CHICAGO, ILLINOIS 60605**

Date:

	Subject:	Review of Region 5 Data for Blue Island Pheno	s		
	From:	Danielle Kleinmaier D% 1/4/12			
	z i Oiii.	Region 5 Chicago Regional Laboratory			
		itegeon o canongo angronna anno mon y			
	To:	RCRA, LCD, US EPA Region 5			
		77 West Jackson Boulevard			
		Chicago, IL 60604			
	our curren does not p	being transmitted under this cover memo successfully put Quality Management Plan (QMP) and appropriate Starform data validation which is based on your data quatory generating the data.	andard Operating Procedures (SOPs)). Please be aw	vare that CRI
	Results in	this report represent only the samples analyzed.			
	Please hav questions.	ve the U.S. EPA Project Manager/Officer call the CRL	Sample Coordinator at (312) 353-03	75 for any com	ments or
	Attached	are Results for: Blue Island Phenols			
	P	A C	01-05-2012 A07:00)	
	Syli	un Treffin	1 1	4	
	Data Mar	nagement Coordinator and Date Received			
	V	01-05-2012 A07:00	The Law Cont		
	Date Trai	nsmitted:/			
Anal	yses included in	this report:			
SVO	A Expanded List				

Page 1 of 55

Environmental Protection Agency Region 5

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604

Project: Blue Island Phenols Project Number: [none]

Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Analysis: SVOA Matrix: water

Project: Blue Island Phenols Work Order #: 1112001 Analyst: Danielle Kleinmaier

Analyst Phone Number: 312.353.9771

Date: 1/4/2011

General Information

Six water samples were originally received for the Toxicity Characteristic Leaching Procedure (TCLP) of Semi-Volatile Organic Analysis (SVOA) compounds on September 13th, 2011 (work order 1109008). On December 6th 2011, the client requested that these same samples be re-evaluated for SVOA compounds by continuous liquid-liquid extraction (work order 1112001). Since the samples had exceeded their extraction holding times, all reported re-extraction data was flagged as estimated ('J').

Sample preparation and analysis occurred via the Chicago Regional Laboratory standard operating procedure (CRL SOP) MS026 Revision # 7.0.

All the supporting data for LIMS ID 1112001-08 (BIP-7, oil phase) is located in the data package for work order 1109008.

Sample Analysis and Results

All of the samples were re-extracted except for BIP-7. Phase separation had occurred in this sample container and the aqueous phase was no longer available. The organic/oil phase was simply diluted and analyzed. Since the organic phase was not extracted, no surrogates were spiked into that fraction of the sample. Separate LIMS IDs were generated for each phase of BIP-7. The organic phase was reported as LIMS ID 1112001-08. Since the aqueous phase could not be re-extracted, LIMS IDs 1112001-06 and -07 do not appear in the report.

Quality Controls

Instrument Performance Check

The benzidine tailing factor failed the instrument performance check criteria in the DFTPP injection for the 10/31/11 sequence (6C11103101.D), affecting the waste dilution of field sample BIP-7 (LIMS ID 1112001-08).

Page 2 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

The instrument sensitivity for the basic compounds analyzed after said failed tailing factor was demonstrated by a 1 ng/uL calibration standard injection at the end of the sequence. All basic compounds were recovered with the exception of 4-chloroaniline and 1,3,5-trinitrobenzene. These two compounds do not appear in the report for LIMS ID 1112001-08.

Continuing Calibration Verification (CCV)

The closing CCV injection affecting the injections of undiluted field samples BIP-2 (LIMS ID 1112001-02), BIP-4 (LIMS ID 1112001-04), and BIP-5 (LIMS ID 1112001-05) analyzed on 12/22/11 exceeded the % difference criteria of $\leq 25\%$ for hexachlorocyclopentadiene.

The CCV injections bracketing the injection of the waste dilution of field sample BIP-7 (LIMS ID 1112001-08) analyzed on 10/31/11 exceeded the %D criteria for pentachlorophenol and benzidine.

Results for these compounds were flagged as estimated ('J') in the report.

Blank Spike Recovery (B112021)

In both the blank spike and blank spike duplicate, 2,4-dimethylphenol and hexachloropropene had calculated recoveries below their respective lower control limits. Neither of these compounds were detected in any of the field samples. These compounds were flagged as estimated ('J') in the report.

Hexachlorocyclopentadiene was not recovered in either blank spike QC sample. This compound was not detected in any of the field samples and was, thus, rejected.

All other quality controls not mentioned here passed the SOP criteria.

Signature _	Sanielle	L'ainmare	Date	1-4-12
_				

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

ANALYTICAL REPORT FOR SAMPLES

Sample ID		·		Laboratory ID	Matrix	Date Sampled	Date Received
BIP-1			20	1112001-01	Water	Sep-13-11 09:15	Dec-06-11 12:37
BIP-2				1112001-02	Water	Sep-13-11 09:21	Dec-06-11 12:37
BIP-3				1112001-03	Water	Sep-13-11 09:29	Dec-06-11 12:37
BIP-4				1112001-04	Water	Sep-13-11 10:07	Dec-06-11 12:37
BIP-5				1112001-05	Water	Sep-13-11 10:18	Dec-06-11 12:37
BIP-7, 9008-07	oil phase			1112001-08	Soil	Sep-13-11 11:17	Dec-06-11 12:37

Page 4 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-1 (1112001-01) Water Sampled: Sep-13-11 09:15 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
N-Nitrosodimethylamine	\mathbf{U}	J		4.17	ug/L	1	B112021	Dec-13-11	Dec-22-1
Pyridine	U	J		4.17	tr	v	11	h	v
2-Picoline	U	J		4.17	16	n	н	ıı	18
N-Nitrosomethylethylamine	U	J		4.17	u	H	-11	11	Н
N-Nitrosodiethy lamine	U	J		4.17	n	11	t1	н	11
Ethyl methanesulfonate	U	J		4.17	u	* #	tt	н	н
Aniline	U	J	2	4.17	**	п	н	It	н
Phenol	U	J		4.17	И	н	w	v	11
Pentachloroethane	U	J		20.8	u	u	п	п	п
Bis(2-chloroethyl)ether	U	J		4.17	и	H	a)·	IF.	**
2-Chlorophenol	U	J		4.17	ų	ш	u	11	n
1,3-Dichlorobenzene	U	J	-	4.17	ti.	, n.	n	n	n
1,4-Dichlorobenzene	U	J		4.17	п	ų	,10	u	n
1,2-Dichlorobenzene	Ü	J		4.17	ri.	n	n	н	n
2-Methylphenol	U	J		4.17	н	n	ır	ıı	н
Bis(2-chloroisopropyl)ether	Ū	J		4.17	11	ır	16	ıt	ţŧ.

Danielle Kleinmaier, Chemist

Page 5 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-1 (1112001-01) Water Sampled: Sep-13-11 09:15 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
N-Nitrosopyrrolidine	U	J		4.17	ug/L	1	B112021	Dec-13-11	Dec-22-1
Acetophenone	U	J		4.17	TÎ.	и	и	н	"
N-Nitroso-di-n-propylamine	U	J		4.17	11	ıi	0	- 0	er
o-Toluidine	U	J		4.17	и	44	n	u	н
3-&/or 4-Methylphenol	U	J		41.7	H.	13	H	U	н
Hexachloroethane	U	J	18.	4.17	H	1)	n	n	и
Nitrobenzene	U	J		4.17	31	21,	и	н	η
N-Nitrosopiperidine	U	J		4.17	н	, it	н	п	и
Isophorone	U	J	,	4.17	н	91	n	n	15.
2-Nitrophenol	U	J.		4.17	11	ti	и	11	16
2,4-Dimethylphenol	U	J		4.17	17	u	n -	u	Ħ
Bis(2-chloroethoxy)methane	U	J .		4.17	15	U	n	н	If
2,4-Dichlorophenol	U	J		4.17	O	u	tt	U	11
1,2,4-Trichlorobenzene	U	J		4.17	в	\$?	n	п	11
Naphthalene	U	J		4.17	н	н	н	п	ţŧ.
2,6-Dichlorophenol	U	J		4.17	11	н	15	81	15

Danielle Klainman

Danielle Kleinmaier, Chemist

Page 6 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-1 (1112001-01) Water Sampled: Sep-13-11 09:15 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
4-Chloroaniline	U	J		4.17	ug/L	1	B112021	Dec-13-11	Dec-22-1
Hexachloropropene	U	J		4.17	n.	10	11	п	11
Hexachlorobutadiene	U	J		4.17	11	11	n .	Ĥ	19
N-Nitrosodi-n-butylamine	U	J		4.17	н	ıı	11	н	н
4-Chloro-3-methylphenol	U	J		4.17	ĮI.	-17	11	11	11
Safrole	U	J		4.17	н	н	н	11	v
2-Methylnaphthalene	U	J		4.17	II	17	'n	n	Ħ
Hexachlorocyclopentadiene	Rejected			20.8	11	n	n	11	n
1,2,4,5-Tetrachlorobenzene	U	J		4.17	н	. H	u	n	₂ 11
2,4,6-Trichlorophenol	Ü	J.		4.17	11	ij	n	u	n
2,4,5-Trichlorophenol	U	J		4.17	n	н	н	п	n
Isosafrole	U	Ĵ		4.17	n .	11	11	n	y s
2-Chloronaphthalene	U	J		4.17	11	11	ü	n	'n
2-Nitroaniline	U.	J		4.17	и	ï	11	n	n
Dimethylphthalate	U	J		4.17	¥	19 =	n	u	. 11
1,3-Dinitrobenzene	U	J		4.17	n .		n	v	11

Danielle Kleinmaier, Chemist

Page 7 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-1 (1112001-01) Water Sampled: Sep-13-11 09:15 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
2,6-Dinitrotoluene	U	J		4.17	ug/L	1	B112021	Dec-13-11	Dec-22-1
Acenaphthylene	U	J	7	4.17	16	и	16	н	tr
3-Nitroaniline	U	J		20.8	ıt	и	н	п	н
Acenaphthene	U	J		4.17	ır	n	11	В	п
2,4-Dinitrophenol	U	J		4.17	It	16	11	и ,	16
Pentachlorobenzene	U	J		4.17	н	18	ii .	Ĥ	n
4-Nitrophenol	U	J		20.8	11	и	11	u u	11
Dibenzofuran	U	J		4.17	16	0	11	н	n,
2,4-Dinitrotoluene	U	J		4.17	п	rr.	н	n	n n
2,3,4,6-Tetrachlorophenol	U	J		4.17	- If	н	и	н	н
Diethylphthalate	U	J		4.17	п	н	n	Ī.	11
Fluorene	U	J		4.17	u	u	Ħ	п	U
4-Chlorophenylphenyl ether	U	J		4.17	tr.	n	и	п	н
5-Nitro-o-toluidine	U	J	-	4.17	II	н	tr.	ı	n
4-Nitroaniline	U	J		4.17	n	11	п	н	н
4,6-Dinitro-2-methylphenol	U	J		20.8	11	H .	н	n	11

Danielle Kleinmaier, Chemist

Page 8 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-1 (1112001-01) Water Sampled: Sep-13-11 09:15 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
Diphenylamine	U	J		4.17	ug/L	1	B112021	Dec-13-11	Dec-22-1
Azobenzene	U	J	-	4.17	.16	11	Ħ	n	11
1,3,5-Trinitrobenzene	U	J		4.17	п	н.	11	II	п
Diallate (cis or trans)	U	J		4.17	11	10	11	15	46
Phenacetin	U	J		4.17	at	11	n	н	11
4-Bromophenyl phenyl ether	U	J		4.17	n	0	11	п	н
Hexachlorobenzene	U	J		4.17	и	и	п	11	ij
Pentachlorophenol	U	J		20.8	н	h	n	n	11
Pentachloronitrobenzene	U	J		4.17	H _	tr	to	н	н
Pronamide	U	J		4.17	11	11	n	16	11
Phenanthrene	U	J		4.17	n	n	u	n	ıı
Dinoseb	U	J		20.8	u.	**	u	· · ·	13
Anthracene	U	J		4.17	11	n	n/	· · · · · · · · · · · · · · · · · · ·	"
Carbazole	U	J		4.17	n	н	n	tt	n
Di-n-butylphthalate	U	J		4.17	11	19	11	Ħ	ii .
Isodrin	U	J		4.17	н	n	·n	W	n-
Fluoranthene	5.00	J		4.17	n	**		11	11

Danielle Kleinmaier, Chemist

Page 9 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-1 (1112001-01) Water Sampled: Sep-13-11 09:15 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
Benzidine	U	J		4.17	ug/L	1	B112021	Dec-13-11	Dec-22-1
Pyrene	U	J		4.17	и	11	п	11	ij
p-Dimethylaminoazobenzene	U	J		4.17	Î	W	п	u	'n
Chlorobenzilate	U	J		4.17	н	IT	п	u	n .
3,3'-Dimethylbenzidine	U	J		20.8	n	H	н	n	н
Butylbenzylphthalate	U	J	-	20.8	11	н	98	U	18
2-Acetylaminofluorene	9.00	J		4.17	11	11	u	n	11
Benzo (a) anthracene	U	J		4.17	11	11	ч	п	1)
3,3'-Dichlorobenzidine	U	J		4,17	II .	0	11	Ħ	11
Chrysene	U	J		4.17	11	11	и	п	и
Bis(2-ethylhexyl)phthalate	U	J		20.8	ŧŧ	11	11	n	Ħ
Di-n-octylphthalate	U	J		4.17	_ ^ n	n	**	0	н
Benzo(b)fluoranthene	U	J		4.17	H	19	, 11	¥	н
Benzo(k)fluoranthene	Ü	Ј		4.17	n.	H	11	n n	11
Benzo(a)pyrene	U	J		4.17	11	н	11	н	'n
3-Methylcholanthrene	U	J		4.17	16	н	11	н	11
Indeno(1,2,3-cd)pyrene	U	J		4.17	11	11	n	В	n

Danielle Kleinmaier, Chemist

Page 10 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-1 (1112001-01) Water Sampled: Sep-13-11 09:15 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepa	ared	Analyzed
Dibenz(a,h)anthracene	U	J		4.17	ug/L	1	B112021		Dec-13-11	Dec-22-1
Benzo(g,h,i)perylene	U	J		4.17	11	H	11		11	11
Surrogate: 2-Fluorophenol	68.2	J		65.5 %	30.	6-99.6	"	"	***	
Surrogate: Phenol-d5	76.7	\mathbf{J}^{-}		73.6 %	34	.2-102	11	11	**	
Surrogate: Nitrobenzene-d5	82.3	J		79.0 %	39.	5-99.5	11	"	"	
Surrogate: 2-Fluorobiphenyl	64.1	J		61.6%	33.	.6-102	11	H	"	
Surrogate: 2,4,6-Tribromophenol	80.1	J		76.9 %	65.	.7-126	"	11	11	
Surrogate: Terphenyl-dl4	89.0	J		85.4 %	60	.7-121	tt .	"	11	

BIP-2 (1112001-02) Water Sampled: Sep-13-11 09:21 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
N-Nitrosodimethylamine	U	J		12.5	ug/L	1	B112021	Dec-13-11	Dec-22-11
Pyridine	U	J		12.5	u ·	и	11	n	11.
2-Picoline	U	J		12.5	н.	и	н	11	9
N-Nitrosomethylethylamine	U	J	v.	12.5	11	н	. n	n ,	и
N-Nitrosodiethylamine	U	J		12.5	u	,n	W	п	H
Ethyl methanesulfonate	U	J		12.5	п	41	н	0	. 0
Aniline	U	J		12.5	ø	11	"	tt	n
Phenol	U	J		12.5	31	n.	11	n	H

Danielle Kleinnaire

Page 11 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-2 (1112001-02) Water Sampled: Sep-13-11 09:21 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
Pentachloroethane	U	J		62.5	ug/L	1	B112021	Dec-13-11	Dec-22-1
Bis(2-chloroethyl)ether	Ŭ	J	24	12.5	u	н	11	Н	15
2-Chlorophenol	U	J		12.5	н	n .	11	n	ñ
1,3-Dichlorobenzene	U	J	7	12.5	n	11	n	н	v
1,4-Dichlorobenzene	U	J		12.5	11	36	н	и	n.
1,2-Dichlorobenzene	Ŭ	J		12.5	11	II .	н	и	н
2-Methylphenol	U	J	- 1-	12.5	11	tr .	ft.	n	19
Bis(2-chloroisopropyl)ether	U	J	-	12.5	u	o	11	п	16
N-Nitrosopyrrolidine	U	J		12.5	tt.	11	11	н	n
Acetophenone	U	J		12.5	ħ	u	U.	11	v
N-Nitroso-di-n-propylamine	U	J		12.5	11	и	u	u ·	и
o-Toluidine	U	J		12.5	u	şt	n .	H	н
3-&/or 4-Methylphenol	U	J		125	- H	u	11	n	11
Hexachloroethane	U	J		12.5	n.	11	1r	u	ir
Nitrobenzene	U	J		12.5	-11	11	n	· · · · · · · · · · · · · · · · · · ·	17
N-Nitrosopiperidine	U	J		12.5	11	u,	11	ij-	n

Danielle Kleinmaier, Chemist

Page 12 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-2 (1112001-02) Water Sampled: Sep-13-11 09:21 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
Isophorone	U	J		12.5	ug/L	1	B112021	Dec-13-11	Dec-22-1
2-Nitrophenol	U	J		12.5	n	11	н	11	£1
2,4-Dimethylphenol	Ū	J		12.5	11	н	n	н	11
Bis(2-chloroethoxy)methane	U	J		12.5	н	16	- 11	н	н
2,4-Dichlorophenol	U	J		12.5	H	н	н	11	tt .
1,2,4-Trichlorobenzene	U	J		12.5	11	U	16	n	11
Naphthalene	U	J		12.5	10	11	н	Ħ	н
2,6-Dichlorophenol	U	J		12.5	w	n	н	tt.	TF.
4-Chloroaniline	U	J		12.5	11	ıı	u	H	11
Hexachloropropene	U	J		12.5	n.	,n,	н	u	ж
Hexachlorobutadiene	U	J		12.5	16	ec	**	n	· ur
N-Nitrosodi-n-butylamine	U	J		12.5	tt	11	11	81	u
4-Chloro-3-methylphenol	U	J		12.5	и	n	п	35	и
Safrole	U	· J		12.5	н	16	11	39	u,
2-Methylnaphthalene	U	J		12.5	н	н	11	п	u
Hexachlorocyclopentadiene	Rejected			62.5	и	tī	н	H.	н

Danielle Kleinmaier, Chemist

Page 13 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604

Project: Blue Island Phenols

Project Number: [none] Project Manager: Mike Beedle Reported:

Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) **US EPA Region 5 Chicago Regional Laboratory**

BIP-2 (1112001-02) Water Sampled: Sep-13-11 09:21 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
1,2,4,5-Tetrachlorobenzene	U	J		12.5	ug/L	1	B112021	Dec-13-11	Dec-22-1
2,4,6-Trichlorophenol	U	J		12.5	Ħ	n n	u	11	и
2,4,5-Trichlorophenol	U	J		12.5	n	и	и	11	п
Isosafrole	· U	J		12.5	11	17	11	u	н
2-Chloronaphthalene	U	J		12.5	11	п	11	п	н
2-Nitroaniline	U	J		12.5	11	н	n	n	11
Dimethylphthalate	U	J		12.5	11	11	п	п	11
1,3-Dinitrobenzene	U	J		12.5	W	н	11	п	13
2,6-Dinitrotoluene	U	J	8	12.5	н	n	11	n	ir
Acenaphthylene	U	J	*10	12.5	н	11	n	и	11
3-Nitroaniline	U	J		62.5	n	11	n	11	п =
Acenaphthene	U	J		12.5	11	и	и	n	n
2,4-Dinitrophenol	U	J		12.5	11	11	n	¥	n .
Pentachlorobenzene	U	J	7.0	12.5	н	11	'n	n	и
4-Nitrophenol	U	J		62.5	17	н	· n	и	н
Dibenzofuran	U	J	-	12.5	п	n	n	n	11

Danielle Kleinmaier, Chemist

Page 14 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-2 (1112001-02) Water Sampled: Sep-13-11 09:21 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
2,4-Dinitrotoluene	U	J		12.5	ug/L	1	B112021	Dec-13-11	Dec-22-1
2,3,4,6-Tetrachlorophenol	U	J		12.5	н	и	п	u	n
Diethylphthalate	U	J		12.5	'n	n	11	n	19
Fluorene	U	J ·		12.5	11	11	n	n	11
4-Chlorophenylphenyl ether	U	J		12,5	n	11	v	u.	n
5-Nitro-o-toluidine	U	J		12.5	11	ħ	H	п	11
4-Nitroaniline	U	J	,	12.5	н	"	п	u	11
4,6-Dinitro-2-methylphenol	U	J		62.5	11	11	11	tf	В.
Diphenylamine	U	J		12.5	11	н	ıı	н	н
Azobenzene	Ū	J		12.5	н	. 11	17	ij	11
1,3,5-Trinitrobenzene	U	J		12.5	19	n	11	v	TT
Diallate (cis or trans)	U	J		12.5	11	11	н	n	n
Phenacetin	U	J		12.5	н	ıı	* 11	н	11
4-Bromophenyl phenyl ether	U	J		12.5	v	Ħ	11	y	II.
Hexachlorobenzene	U	J	· ·	12.5	21	11	н	n	n
Pentachlorophenol	Ū	J		62.5	H	16	u	11	н

Danielle & leinmaie

Page 15 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-2 (1112001-02) Water Sampled: Sep-13-11 09:21 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
Pentachloronitrobenzene	U	J	-	12.5	ug/L	1	B112021	Dec-13-11	Dec-22-1
Pronamide	U	J		12.5	п	16	15	n	н
Phenanthrene	62.8	J		12.5	11	u	17	It	n
Dinoseb	U	J	4	62.5	н	15	11	ti	II.
Anthracene	U	J		12.5	n	u	11	п	tŧ
Carbazole	U	J		12.5	и	п	5 †	н	11
Di-n-butylphthalate	. U	J		12.5	ti .	п	ır	п	11
Isodrin	U	J		12.5	и	п	и	łs	11
Fluoranthene	142	J		12.5	W	п	v	10	11
Benzidine	U	J	4	12.5	16	11	18	tt	86
Pyrene	101	J		12.5	n	11	b 7	H.	U
p-Dimethylaminoazobenzene	U	J		12.5	п		15	TT.	Ħ
Chlorobenzilate	U	J .		12.5	11	U	u.	, n	n
3,3'-Dimethylbenzidine	U	J		62.5	15	st	u	n	и
Butylbenzylphthalate	U	J		62.5	· ·	н	H	U	11
2-Acetylaminofluorene	U	J		12.5	st	11	H	u	15
Benzo (a) anthracene	37.1	J		12.5	н	19	н	U	31
3,3'-Dichlorobenzidine	U	J		12.5	н	11	15	II.	11
Chrysene	64.5	J		12.5	-11	11	11	H	11

Danielle Kleinmaier, Chemist

Page 16 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-2 (1112001-02) Water Sampled: Sep-13-11 09:21 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
Bis(2-ethylhexyl)phthalate	87.4	J		62.5	ug/L	1	B112021	Dec-13-11	Dec-22-11
Di-n-octylphthalate	U	J		12.5	п	11	п		17
Benzo(b)fluoranthene	86.2	J		12.5	11	и	11	U	11
Benzo(k)fluoranthene	34.5	J		12.5	11	14	11	11	19 -
Benzo(a)pyrene	36.9	J		12.5	н	н	11	11	-11
3-Methylcholanthrene	U	J	0.	12.5	н	11	11		n u
Indeno(1,2,3-cd)pyrene	38.5	J		12.5	11	11	и	11	п
Dibenz(a,h)anthracene	12.8	J		12.5	11	21	n	**	11
Benzo(g,h,i)perylene	47.0	J		12.5	u	ń	14	16	11
		•							
Surrogate: 2-Fluorophenol	113	J		36.1 %	30.	6-99.6	11	. "	"
Surrogate: Phenol-d5	174	J		55.7 %	34.	2-102	11	"	"
Surrogate: Nitrobenzene-d5	209	J		66.9 %	39.	5-99.5	***	"	n
Surrogate: 2-Fluorobiphenyl	182	J		58.4 %	33.	.6-102		"	"
Surrogate: 2,4,6-Tribromophenol	151	J		48.4 %	65.	7-126	"	"	"
Surrogate: Terphenyl-d14	259	J		82.8 %	60.	.7-121	**	n	**

BIP-3 (1112001-03) Water Sampled: Sep-13-11 09:29 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
N-Nitrosodimethylamine	U	J		6.06	ug/L	1	B112021	Dec-13-11	Dec-22-1
Pyridine	U	J		6.06	"	н	n	- 17	tt
2-Picoline	U	J		6.06	11	u	et .	м	18
N-Nitrosomethylethylamine	U	J		6.06	U	и	if	н	n
N-Nitrosodiethylamine	U	J		6.06	71	н	u	u	v

Danielle Kleinmaier, Chemist

Page 17 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-3 (1112001-03) Water Sampled: Sep-13-11 09:29 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
Ethyl methanesulfonate	U	J		6.06	ug/L	1	B112021	Dec-13-11	Dec-22-1
Aniline	U	J	4	6.06	п	11	и	п	11
Phenol	Ū	J		6.06	11	ti -	If	н	11
Pentachloroethane	U	J		30.3	n	u	11	п	¥f.
Bis(2-chloroethyl)ether	U	J		6.06	11	и	\$1	и	n
2-Chlorophenol	U	J		6.06	ti.	n	н	II .	н
1,3-Dichlorobenzene	U	J		6.06	п	n	11	O .	н
1,4-Dichlorobenzene	U	J		6.06	tr	н	11	п	н
1,2-Dichlorobenzene	U	J		6.06	11	н	и	н	11
2-Methylphenol	U	J		6.06	н	Ð	v	It	11
Bis(2-chloroisopropyl)ether	U	J		6.06	11	Ð	ii.	11	Ü
N-Nitrosopyrrolidine	Ü	J		6.06	11	H	If	11.	n.
Acetophenone	U	J		6.06	10	H-	п	11	II.
N-Nitroso-di-n-propylamine	U	J		6.06	11	и	и	n	н
o-Toluidine	U	J		6.06	n	. 11	n	и	ıt.
3-&/or 4-Methylphenol	U	J		60.6	n	н	"	и	. 19

Danielle Kleinmaier, Chemist

Page 18 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-3 (1112001-03) Water Sampled: Sep-13-11 09:29 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
Hexachloroethane	U	J		6.06	ug/L	1	B112021	Dec-13-11	Dec-22-1
Nitrobenzene	U	J		6.06	н	11	11	н	н
N-Nitrosopiperidine	U	J		6.06	H-	n	11	n	ır
Isophorone	U	J		6.06	и	н	н	17	¥
2-Nitrophenol	U	J		6.06	n	ŧŧ	ŧŧ	п	и
2,4-Dimethylphenol	U	J		6.06	, r	и	n	H	n
Bis(2-chloroethoxy)methane	U	J		6.06	н	21	11	12	v
2,4-Dichlorophenol	U	J		6.06	n	\$F	ij	ıı	и
1,2,4-Trichlorobenzene	U	J		6.06	SF SF	u	11	н	и
Naphthalene	U	J		6.06	п	п	н	п	11
2,6-Dichlorophenol	U	J		6.06	u	17	11	u	ш
4-Chloroaniline	U	J		6.06	11	11	Ħ	n	н
Hexachloropropene	U	J		6.06	п	ij	n	и	H
Hexachlorobutadiene	U	J		6.06	ti	11	11	10	11
N-Nitrosodi-n-butylamine	U	J		6.06	11	n	н	н	н
4-Chloro-3-methylphenol	U	J		6.06	н	11	at .	11	В

Danielle Kleinmaier, Chemist

Page 19 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-3 (1112001-03) Water Sampled: Sep-13-11 09:29 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
Safrole	Ū	J		6.06	ug/L	1	B112021	Dec-13-11	Dec-22-1
2-Methylnaphthalene	U	J		6.06	18	it.	W	н	В
Hexachlorocyclopentadiene	Rejected			30.3	u	п	n	и	11
1,2,4,5-Tetrachlorobenzene	U	J		6.06	U	п	II	н	11
2,4,6-Trichlorophenol	U	J		6.06	st.	R	п	п	SF.
2,4,5-Trichlorophenol	Ü	J		6.06	В	н	11	U	**
Isosafrole	U	J		6.06	т.н	11	38	v.	и
2-Chloronaphthalene	U	J		6.06	н	· ·	v	n	н
2-Nitroaniline	U	J		6.06	v	n	n	п	и
Dimethylphthalate	Ü	J		6.06	tr.	II .	п	п	19
1,3-Dinitrobenzene	U	J		6.06	н	ч	R	я.	If
2,6-Dinitrotoluene	U	J		6.06	н	и	11	u	н
Acenaphthylene	U	J		6.06	11	ŧŧ	v	ч	и
3-Nitroaniline	U	J		30.3	v	n	u u	- <u>n</u>	н
Acenaphthene	U	J .		6.06	ŧŧ	"		n n	tr
2,4-Dinitrophenol	U	J		6.06	н	н	11	н	10

Danielle Kleinmaier, Chemist

Page 20 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-3 (1112001-03) Water Sampled: Sep-13-11 09:29 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
Pentachlorobenzene	U	J		6.06	ug/L	1	B112021	Dec-13-11	Dec-22-1
4-Nitrophenol	Ū	J		30.3	19	11	н	п	u
Dibenzofuran	Ü	J		6.06	11	11	11	U	н
2,4-Dinitrotoluene	U	J	-17	6.06	ıı	.10	11	- 11	tt
2,3,4,6-Tetrachlorophenol	U	J	2	6.06	10	11	11	н	11
Diethylphthalate	10.7	J		6.06	н	ti .	н	11	47
Fluorene	U	J		6.06	11	11	11	'n	п
4-Chlorophenylphenyl ether	U	J		6.06	13	11	U	89	ıı
5-Nitro-o-toluidine	U	J	2	6.06	n	11	11	Ħ	11
4-Nitroaniline	U	J		6.06	- 11	n	n	13	п
4,6-Dinitro-2-methylphenol	U	J		30.3	п		11	п	U
Diphenylamine	U	J		6.06	u	11	п	U	n
Azobenzene	U	J		6.06	11	ar	n	0	n
1,3,5-Trinitrobenzene	U	J		6.06	н	и	10	п	- u
Diallate (cis or trans)	U	J	-	6.06	ti.	n	п	11	и
Phenacetin	U	J		6.06	11	n	11	n	n
4-Bromophenyl phenyl ether	U	J		6.06	"	11	11	п	U

Danielle Kleinmaier, Chemist

Page 21 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-3 (1112001-03) Water Sampled: Sep-13-11 09:29 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
Hexachlorobenzene	U	J		6,06	ug/L	1	B112021	Dec-13-11	Dec-22-1
Pentachlorophenol	U	1		30.3	11	н	и	n	n
Pentachloronitrobenzene	U	J		6,06	и	п	n	и	n
Pronamide	U	J		6.06	u	Ħ	11 -	и	п
Phenanthrene	U	J	15	6.06	u	Ħ	-10	n .	11
Dinoseb	Ü	J		30.3	11	н	D	n	11
Anthracene	U	J		6.06	II	ıı	11	и	11
Carbazole	U	J	2	6.06	11	u	и	11	¥
Di-n-butylphthalate	U	J		6.06	н	н	Ħ	и	п
Isodrin	U	J		6.06	u	н	и	U	n .
Fluoranthene	U	J		6.06	H	11	11	II.	11
Benzidine	U	J	-	6.06	н	11	n	n	ı
Pyrene	U	J		6.06	11	u	n	. "	11
p-Dimethylaminoazobenzene	U	J		6.06	п	- n	11	н	11
Chlorobenzilate	Ü	J		6.06	u	H	16	It	, n
3,3'-Dimethylbenzidine	U	J		30.3	0	11	10	tt	п

Danielle Kleinmaier, Chemist

Page 22 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-3 (1112001-03) Water Sampled: Sep-13-11 09:29 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
Butylbenzylphthalate	U	J	1,122	30.3	ug/L	1	B112021	Dec-13-11	Dec-22-1
	Ü			(0)	n	н			
2-Acetylaminofluorene	U	J		6.06			**	II	11
Benzo (a) anthracene	U	J		6.06	0.	11	11	v	11
3,3'-Dichlorobenzidine	U	J		6.06	я	16	n	н	ñ
Chrysene	U	J		6.06	и	11	н	It	v
Bis(2-ethylhexyl)phthalate	437	J		30.3	"	11	н	11	11
Di-n-octylphthalate	U	J		6.06	Ħ	11	14	н	11
Benzo(b)fluoranthene	U	J		6.06	n	U	H	1f	u
Benzo(k)fluoranthene	U	J	0.	6.06	н	n	ħ	v	и
Benzo(a)pyrene	U	J		6.06	n.	н	н	n	11
3-Methylcholanthrene	U	J		6.06	17	AT .	11	n	tr.
Indeno(1,2,3-cd)pyrene	U	J		6.06	п	11	18	0	b
Dibenz(a,h)anthracene	U	J		6.06	0	n	п	n	и
Benzo(g,h,i)perylene	U	J		6.06	16	11	16	u	H
Surrogate: 2-Fluorophenol	88.8	J		58.6 %	30	.6-99.6	н	"	"
Surrogate: Phenol-d5	106	J		69.8 %	34	4.2-102	"	**	"
Surrogate: Nitrobenzene-d5	117	J		77.3 %	39	.5-99.5	"	"	n
Surrogate: 2-Fluorobiphenyl	90.5	J		59.8 %	33	3.6-102	n	,,,	,,

Danielle Kleinmaier, Chemist

Page 23 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]

Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-3 (1112001-03) Water Sampled: Sep-13-11 09:29 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
Surrogate: 2,4,6-Tribromophenol	103	J		68.2 %	65.	7-126	B112021	Dec-13-11	Dec-22-11
Surrogate: Terphenyl-d14	133	J		87.9 %	60.	7-121	11	"	"

BIP-4 (1112001-04) Water Sampled: Sep-13-11 10:07 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
N-Nitrosodimethylamine	U	J		4.76	ug/L	1	B112021	Dec-13-11	Dec-22-1
Pyridine	U	J		4.76	19	U	ıı	Ď.	W
2-Picoline	U	J		4.76	11	11	u	п	31
N-Nitrosomethylethylamine	U	J		4.76	u	11	tr .	н	н.
N-Nitrosodiethylamine	U	, J		4.76	18	п	II.	π	n
Ethyl methanesulfonate	U	J		4.76	. ii	. п	н	н	n
Aniline	U	J		4.76	II.	н	n	п	11
Phenol	17600	J		238	п	50	11	If	Dec-22-11
Pentachloroethane	U	J	4,	23.8	п	1	н	Ū	Dec-22-1
Bis(2-chloroethyl)ether	U	J		4.76	н	и	u	II.	п
2-Chlorophenol	U	J		4.76	п	tt.	11	п	ty
1,3-Dichlorobenzene	U	J	Τ.	4.76	n	It.	ıt	n	н
1,4-Dichlorobenzene	U	J		4.76	¥F.	n.	н	n	'n
1,2-Dichlorobenzene	U	J		4.76	D	11	#	Ħ	Ř

Danielle Kleinmaier, Chemist

Page 24 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-4 (1112001-04) Water Sampled: Sep-13-11 10:07 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
2-Methylphenol	· U	J		4.76	ug/L	1	B112021	Dec-13-11	Dec-22-1
Bis(2-chloroisopropyl)ether	U	J		4.76	n	Н	n	11	н
N-Nitrosopyrrolidine	U	J		4.76	n	"	Ü	н	11
Acetophenone	160	J		4.76	н	11	v	11	11
N-Nitroso-di-n-propylamine	U	J		4.76	11	14	11	'n	и
o-Toluidine	U	J		4.76	U	н	U	н	п
3-&/or 4-Methylphenol	Ü	J		47.6	п	11	11	n	11
Hexachloroethane	U	J		4.76	ü	н	н	n	н
Nitrobenzene	U	J		4.76	н	u	w	U	Н
N-Nitrosopiperidine	U	J		4.76	н	11	H:	н	ty
Isophorone	U	J		4.76	•	n	U	n	ii
2-Nitrophenol	U	J		4.76	11	н	n	U	н
2,4-Dimethylphenol	U	J		4.76	н	п	п	n	Ū
Bis(2-chloroethoxy)methane	U	J	· - ·	4.76	n	P	II.	tı,	ît
2,4-Dichlorophenol	U	J		4.76	н	и	18	11	п
1,2,4-Trichlorobenzene	U	J		4.76	tr T	n	н	n	11
Naphthalene	U	J	_	4.76	n	n.	n	п	11

Danielle Kleinmaier, Chemist

Page 25 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-4 (1112001-04) Water Sampled: Sep-13-11 10:07 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
2,6-Dichlorophenol	U	J		4.76	ug/L	1	B112021	Dec-13-11	Dec-22-1
4-Chloroaniline	U	J		4.76	и	n	п	ıı	n
Hexachloropropene	U	J		4.76	_ н	n	н	u	16
Hexachlorobutadiene	U	J		4.76	н	16	п	п	п
N-Nitrosodi-n-butylamine	U	J		4.76	н	и	n	u	er
4-Chloro-3-methylphenol	Ü	J		4.76	11	U	н	н	18
Safrole	U	J		4.76	ч	Ü	11	ti .	ii .
2-Methylnaphthalene	U	J		4.76	W	u	11	п	н
Hexachlorocyclopentadiene	Rejected			23.8	17	п	u.	n	п
1,2,4,5-Tetrachlorobenzene	Ü	J	- 12	4.76	H	n	şi,	it .	. и
2,4,6-Trichlorophenol	U	J		4.76	н	n	n	II.	II
2,4,5-Trichlorophenol	U	Ј		4.76	н	16	Ħ	н	u
Isosafrole	U	j		4.76	18	19	61	n	н
2-Chloronaphthalene	U	J		4.76	11	tt	п	u	u
2-Nitroaniline	U	J		4.76	-10	u	11	n	¥
Dimethylphthalate	U	J		4.76	11	n	u	и	ii ii

Danielle Kleinmaier, Chemist

Page 26 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-4 (1112001-04) Water Sampled: Sep-13-11 10:07 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
1,3-Dinitrobenzene	U	J		4.76	ug/L	1	B112021	Dec-13-11	Dec-22-1
2,6-Dinitrotoluene	· U	J		4.76	v	н	н	н	н
Acenaphthylene	U	J		4.76	n	11	if	11	M.
3-Nitroaniline	U	J		23.8	н	н	11	п	11
Acenaphthene	Ü	J		4.76	n	U	н	n	n -
2,4-Dinitrophenol	U	J		4.76	н	n	1)	0	v
Pentachlorobenzene	U	J		4.76	v	11	н	n	п
4-Nitrophenol	U	J		23.8	n	n	н	υ	ıı ı
Dibenzofuran	U	J		4.76	ū	п	10	н	13
2,4-Dinitrotoluene	U	J		4.76	19	11	н	n	н
2,3,4,6-Tetrachlorophenol	U	- J		4.76	ii -	и	u ·		ri .
Diethylphthalate	U	J		4.76	· ·	n	H.	н	11
Fluorene	U	J		4.76	н	Ħ	н	u .	н
4-Chlorophenylphenyl ether	U	J		4.76	н	н	11	и	n
5-Nitro-o-toluidine	U	J		4.76	ıı	P	n	n n	11
4-Nitroaniline	U	J		4.76	н	te.	II	Đ	н

Danielle Kleinmaier, Chemist

Page 27 of 55

Environmental Protection Agency Region 5

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-4 (1112001-04) Water Sampled: Sep-13-11 10:07 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
4,6-Dinitro-2-methylphenol	U	J		23.8	ug/L	1	B112021	Dec-13-11	Dec-22-1
Diphenylamine	Ü	J		4.76	n	-11	11	п	н
Azobenzene	U	J		4.76	II.	и	н	и	16
1,3,5-Trinitrobenzene	U	J		4.76	n	u	- 16	n.	и
Diallate (cis or trans)	U	a J		4.76	н	19	Ħ	n	ır
Phenacetin	U	J		4.76	u	ıı	v)	n	u
4-Bromophenyl phenyl ether	U	J		4.76	it	ıı	17	'n	U
Hexachlorobenzene	U	J		4.76	u	п	n	н	vr.
Pentachlorophenol	U	J		23.8	£f	я	n	· ·	n
Pentachloronitrobenzene	U	J	-	4.76	n	11	Ħ	и	n
Pronamide	U	J		4.76	II	19	11	ij	11
Phenanthrene	U	J		4.76	.11	W.	u	n n	16
Dinoseb	U	J		23.8	11	n	1)	н	11
Anthracene	U	J		4.76	U	n	n	п	ts -
Carbazole	U	J		4.76	и	я	п	N .	n
Di-n-butylphthalate	U	J		4.76	lt .	_16	н	U	Ħ

Danielle Kleinmaier Chemist

Page 28 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-4 (1112001-04) Water Sampled: Sep-13-11 10:07 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
Isodrin	U	J		4.76	ug/L	1	B112021	Dec-13-11	Dec-22-1
Fluoranthene	U	J		4.76	n	if .	n	п	11
Benzidine	U	J		4.76	n.	Э.	tt.	11	11
Pyrene	U	J		4.76	n	rt	u u	Ü	н
p-Dimethylaminoazobenzene	U	J		4.76	ti.	11	Ħ	п	11
Chlorobenzilate	U	Ј		4.76	11	11	17	11	11
3,3'-Dimethylbenzidine	U	J		23.8	n,	и	н	"	н
Butylbenzylphthalate	U	J		23.8	n	11	11	ñ	ii
2-Acetylaminofluorene	U	J		4.76	н	п	11	11	ii.
Benzo (a) anthracene	U	J	04	4.76	· · · · · · · · ·	11	н	n	п
3,3'-Dichlorobenzidine	U	J		4.76	16	· ·	11	tt	TI.
Chrysene	U	J		4.76		н	1t	tr.	11
Bis(2-ethylhexyl)phthalate	U	J		23.8	ri	-tr	, II	n	It
Di-n-octylphthalate	U	J		4.76	й	re	11	Ħ	11
Benzo(b)fluoranthene	U	J		4.76	н	н	rt.	U	n
Benzo(k)fluoranthene	U	J	-14	4.76	1t	v	H.	11	ii

Danielle Kleinmaier, Chemist

Page 29 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-4 (1112001-04) Water Sampled: Sep-13-11 10:07 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
Benzo(a)pyrene	U	J		4.76	ug/L	1	B112021	Dec-	13-11 Dec-22-
3-Methylcholanthrene	U	J		4.76	н	и	"		В
Indeno(1,2,3-cd)pyrene	U	J		4.76	n	11	Ħ		11
Dibenz(a,h)anthracene	U	J		4.76	11	n .	ii .		19
Benzo(g,h,i)perylene	U	J		4.76	1)	11	u	7	n
Surrogate: 2-Fluorophenol	87.5	J		73.5 %	30.	6-99.6	n	"	"
Surrogate: Phenol-d5	90.6	J		76.1 %	34.	2-102	11	**	"
Surrogate: Nitrobenzene-d5	91.4	J		76.8 %	39.	5-99.5	11	"	"
Surrogate: 2-Fluorobiphenyl	88.6	J		74.4 %	33.	6-102	"	"	**
Surrogate: 2,4,6-Tribromophenol	135	J		113 %	65.	7-126	n	"	"
Surrogate: Terphenyl-d14	92.9	J		78.0 %	60.	7-121	11	"	"

BIP-5 (1112001-05) Water Sampled: Sep-13-11 10:18 Received: Dec-06-11 12:37

A . 1	Develo	Flags /	MDI	T touta	T.T. is a	Dilation	Datal	Dronovad	A 1
Analyte	Result	Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
N-Nitrosodimethylamine	U	J		3.85	ug/L	1	B112021	Dec-13-11	Dec-22-1
Pyridine	U	J		3.85	u	и	n	п	31
2-Picoline	U	J		3.85	п		и	n	v
N-Nitrosomethylethylamine	U	J		3.85	n	n	и	п	и
N-Nitrosodiethylamine	Ü	J		3.85	11	н	11	9	Ħ

Danielle Kleinmaier, Chemist

Page 30 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-5 (1112001-05) Water Sampled: Sep-13-11 10:18 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
Ethyl methanesulfonate	U	J		3.85	ug/L	1	B112021	Dec-13-11	Dec-22-1
Aniline	U	J		3.85	ti	ti .	н	n	u
Phenol	27600	J		385	71	100	16	11)	Dec-29-11
Pentachloroethane	U	J		19.2	n	1	17	11	Dec-22-1
Bis(2-chloroethyl)ether	U	J	_	3.85	u	u	H	u	u
2-Chlorophenol	U	J		3.85	n	и	n	n	n
1,3-Dichlorobenzene	U	J		3.85	110	11	и	0	н
1,4-Dichlorobenzene	U	J		3.85	11	11	_ n	n	u
1,2-Dichlorobenzene	U	J		3.85	н	n	11	н	н
2-Methylphenol	U	J	•	3.85	n	и	ti	u	, D
Bis(2-chloroisopropyl)ether	U	J		3.85	и	n	н	u	u
N-Nitrosopyrrolidine	U	J		3.85	н	н	11	н	· pt
Acetophenone	186	J		3.85	ti.	ti	н	н	п
N-Nitroso-di-n-propylamine	U	J		3.85	- 11	11	n	u	it.
o-Toluidine	U	J		3.85	n	ħ	и	u	u
3-&/or 4-Methylphenol	U	J		38.5	ч	11	tr	и	и
Hexachloroethane	U	J		3.85	11	11	11	11	'n

Danielle Kleinmaier, Chemist

Page 31 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-5 (1112001-05) Water Sampled: Sep-13-11 10:18 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
Nitrobenzene	U	J		3.85	ug/L	1	B112021	Dec-13-11	Dec-22-1
N-Nitrosopiperidine	Ü	J		3.85	н	и	n	. 11	Ü
Isophorone	U	J	19	3.85	16	и	h	п	tt
2-Nitrophenol	· U	J		3.85	υ	н	п	i n	17
2,4-Dimethylphenol	U	J	2	3.85	v	n	н	н	н
Bis(2-chloroethoxy)methane	U	J	*	3.85	tr	n	n	, n	п
2,4-Dichlorophenol	U	J		3.85	et et	ır	11	п	n
1,2,4-Trichlorobenzene	U	J		3.85	н	н	н	n	н
Naphthalene	U	J		3.85	н	11	11	v	11
2,6-Dichlorophenol	U	J		3.85	11	n ,	н	n	.0
4-Chloroaniline	U	J		3.85	31	¢1	n	· ·	v
Hexachloropropene	U	J		3.85	u	11	u	Ü	42
Hexachlorobutadiene	Ů	J	v.	3.85	H.	n	н	п	n
N-Nitrosodi-n-butylamine	U	J		3.85	н	11	11	, 1	n
4-Chloro-3-methylphenol	U	J		3.85	п	Ħ	u	u	- 11
Safrole	U	J		3.85	76	н	п	U	11

Danielle Kleinmaier Chemist

Page 32 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-5 (1112001-05) Water Sampled: Sep-13-11 10:18 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
2-Methylnaphthalene	U	J		3.85	ug/L	1	B112021	Dec-13-11	Dec-22-11
Hexachlorocyclopentadiene	Rejected		-	19.2		п	п	п	te
1,2,4,5-Tetrachlorobenzene	U	J		3.85	u	10	11	11	п
2,4,6-Trichlorophenol	U	J		3.85	н	н	H	11	tr
2,4,5-Trichlorophenol	U	J		3.85	Ħ	11	0	н	11.
Isosafrole	U	J		3.85	11	11	11	, 11	н
2-Chloronaphthalene	U	J		3.85	н	н	п	41	u
2-Nitroaniline	U	J		3.85	и	11	n	n	n
Dimethylphthalate	U	J		3.85	11	**	п	ır	n
1,3-Dinitrobenzene	U	J		3.85	п	н	n ·	В	41,
2,6-Dinitrotoluene	Ú	J		3.85	11	18	16	п	16
Acenaphthylene	U	J	- E	3.85	11	16	11	11	n
3-Nitroaniline	U	J		19.2	H	н	ıı.	п	š?
Acenaphthene	U	J		3.85	v	v	n	N	U
2,4-Dinitrophenol	U	J		3.85	н	н	н	и	н
Pentachlorobenzene	U	J		3.85	11	11	u	11	y

Danielle Kleinmaier, Chemist

Page 33 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-5 (1112001-05) Water Sampled: Sep-13-11 10:18 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
4-Nitrophenol	U	J		19.2	ug/L	1	B112021	Dec-13-11	Dec-22-1
Dibenzofuran	U	J	- 10	3.85	11	"	11	п	н
2,4-Dinitrotoluene	U	J		3.85	0	n	11	11	н
2,3,4,6-Tetrachlorophenol	U	J		3.85	· ·	н	-19	п	н
Diethylphthalate	U	J		3.85	ır	п	11	11	11
Fluorene	U	J		3.85	п	n	37.	u	11
4-Chlorophenylphenyl ether	U	J		3.85	п	9	n	n	at .
5-Nitro-o-toluidine	U	J	74	3.85	0	ũ	n	n.	я
4-Nitroaniline	U	J		3.85	н	n	11	ji.	n
4,6-Dinitro-2-methylphenol	U	J	-	19.2	II	n	11	n	н
Diphenylamine	U	J		3.85	et .	n	19	н	11
Azobenzene	U	J		3.85	rt .	11	ıı	п	10
1,3,5-Trinitrobenzene	U	J	k.	3.85	Ħ	11	n	ı	11
Diallate (cis or trans)	U	J		3.85	11	0	n	п	11
Phenacetin	U	J		3.85	11	n.	11	п	tf.
4-Bromophenyl phenyl ether	U	J		3.85	11	Ħ	11	"	п

Danielle Kleinmaier, Chemist

Page 34 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-5 (1112001-05) Water Sampled: Sep-13-11 10:18 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
Hexachlorobenzene	U	J		3.85	ug/L	1	B112021	Dec-13-11	Dec-22-1
Pentachlorophenol	U	J		19.2	u	u	ıı	п	49
Pentachloronitrobenzene	U	J		3.85	и	Ħ	u	h	и
Pronamide	U	J		3.85	н	н	ti	'n	н
Phenanthrene	U	J		3.85	h	и	п	11	n
Dinoseb	U	Ј		19.2	54	11.	17	н	u
Anthracene	U	Ј		3.85	11	п	W	17	н
Carbazole	U	J		3.85	e.	(ii)	н	· II	H
Di-n-butylphthalate	Ŭ	J		3.85	· tt	и	al	15	'n
Isodrin	U	J		3.85	11	н	11		16
Fluoranthene	U	J		3.85	n	u	н	u	H
Benzidine	U	J		3.85	u	u	n	ü	н
Pyrene	U	J		3.85	11	н	11		н
p-Dimethylaminoazobenzene	U	J		3.85	H.	4y	11	II.	U
Chlorobenzilate	U	J		3.85	v	u	н	t)	11
3,3'-Dimethylbenzidine	U.	J		19.2	11	- 11	IF.	и	н

Danielle Meinmain Chamist

Page 35 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-5 (1112001-05) Water Sampled: Sep-13-11 10:18 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
Butylbenzylphthalate	U	J		19.2	ug/L	1	B112021	Dec-13-11	Dec-22-1
2 doj 10 on 23 i pilitina ilito									
2-Acetylaminofluorene	U	J		3.85	ū	11	11	11	11
Benzo (a) anthracene	U	J		3.85	п	16	ч	u	11
3,3'-Dichlorobenzidine	U	J	>	3.85	п	- 11	и	п	ti -
Chrysene	U	J		3.85	11	11	U	u	п
Bis(2-ethylhexyl)phthalate	U	J		19.2	16	u	п	U	11
Di-n-octylphthalate	U	J		3.85	'n	U	n	U	ц
Benzo(b)fluoranthene	U	J		3.85	49	u	н	n	39
Benzo(k)fluoranthene	U	J		3.85	ir	n	11	И	n
Benzo(a)pyrene	U	J		3.85	n	n	44	п	н
3-Methylcholanthrene	U	J	v	3.85	n	п	U	п	n
Indeno(1,2,3-cd)pyrene	U	J		3.85	н	п	п	n	н
Dibenz(a,h)anthracene	U	J		3.85	n	. 11	n	U	11
Benzo(g,h,i)perylene	U	J		3.85	18	U	11	v	u
Surrogate: 2-Fluorophenol	77.3	J		80.4 %	30.	6-99.6	11	" "	
Surrogate: Phenol-d5	79.3	J		82.4 %	34.	2-102	"	" "	
Surrogate: Nitrobenzene-d5	76.1	J		79.2 %		5-99.5	"	" "	

Danielle Kleinmaier Chemist

Page 36 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-5 (1112001-05) Water Sampled: Sep-13-11 10:18 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
Surrogate: 2-Fluorobiphenyl	73.6	J		76.6 % 33.6-102		B112021	Dec-13-11	Dec-22-11	
Surrogate: 2,4,6-Tribromophenol	108	J		113 % 65.7-126		7-126	"	"	"
Surrogate: Terphenyl-d14	76.3	J		79.4 %	60.	7-121	"	"	"

BIP-7, 9008-07 oil phase (1112001-08) Soil Sampled: Sep-13-11 11:17 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
N-Nitrosodimethylamine	Ü		8.75E5	ug/L	1	B112021	Sep-23-11	Oct-31-1
Pyridine	U		8.75E5	u	11	п	ti	ti
2-Picoline	U	-	8.75E5	11	и	п	n	н
N-Nitrosomethylethylamine	U		8.75E5	н	U	11	· ·	n
N-Nitrosodiethylamine	U		8.75E5	u	n	н	11	19
Ethyl methanesulfonate	U		8.75E5	н	b	W.	n	н
Aniline	U	· ·	8.75E5	11	и	ľ	u	и
Phenol	U		8.75E5	и	u)	u	н	n
Pentachloroethane	U		4.38E6	41	11	и	ŧŧ	н
Bis(2-chloroethyl)ether	U		8.75E5	H	п	н	u	(H)
2-Chlorophenol	U		8.75E5	Н	и	ii.	n	N.
1,3-Dichlorobenzene	U	*	8.75E5	u	, n T	п	u	n
1,4-Dichlorobenzene	U		8.75E5	n	11	u	n *	n

Danielle Kleinmaier, Chemist

Page 37 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-7, 9008-07 oil phase (1112001-08) Soil Sampled: Sep-13-11 11:17 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
1,2-Dichlorobenzene	U			8.75E5	ug/L	1	B112021	Sep-23-11	Oct-31-1
2-Methylphenol	U	3		8.75E5	II	n	11	16	15
Bis(2-chloroisopropyl)ether	U			8.75E5	Н	n .	u	H	11 .
N-Nitrosopyrrolidine	U		-	8.75E5	п	11	17	н	15
Acetophenone	9.57E6			8.75E5	11	11	11	11	11
N-Nitroso-di-n-propylamine	\mathbf{U}	-		8.75E5	16	и	11	ч	п
o-Toluidine	Ľ			8.75E5	11	11	85	n	п
3-&/or 4-Methylphenol	U			8.75E6	11	n	11	n	n
Hexachloroethane	U			8.75E5	u ·	11	n	п	п
Nitrobenzene	U		,	8.75E5	п	и		н	11
N-Nitrosopiperidine	U			8.75E5	11	H	п	11	10
Isophorone	U			8.75E5	11	n	н	u ·	II.
2-Nitrophenol	U			8.75E5	10	n	U	U	н
2,4-Dimethylphenol	U			8.75E5	11	11	u	U	п
Bis(2-chloroethoxy)methane	U		7	8.75E5	n	si	u.	n	n
2,4-Dichlorophenol	U			8.75E5	п	н	п	и	15
1,2,4-Trichlorobenzene	U			8.75E5	n	n	н	11	18

Danielle Kleinmaier, Chemist

Page 38 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-7, 9008-07 oil phase (1112001-08) Soil Sampled: Sep-13-11 11:17 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
Naphthalene	U	<u></u>		8.75E5	ug/L	1	B112021	Sep-23-11	Oct-31-1
2,6-Dichlorophenol	U	- 154		8.75E5	11	н	п	u	'H'
Hexachloropropene	U			8.75E5	n,	n	n	n	U
Hexachlorobutadiene	U			8.75E5	311-	n	u'	n	II
N-Nitrosodi-n-butylamine	U			8.75E5	n	и	н	u	н
4-Chloro-3-methylphenol	U		_	8.75E5	11.	n	tt.	п	17
Safrole	U			8.75E5	14	Ħ	u u	н	п
2-Methylnaphthalene	U		E	8.75E5	n.	н	ıt	н	и
Hexachlorocyclopentadiene	U			4.38E6	11	u	u	.9	W
1,2,4,5-Tetrachlorobenzene	U			8.75E5	11	н	n	н	ж
2,4,6-Trichlorophenol	U			8.75E5	11	¥f	п	tr	H
2,4,5-Trichlorophenol	U			8.75E5	ti	п	ų	ti	ч
Isosafrole	U			8.75E5	11	н	14	ū	ti
2-Chloronaphthalene	U			8.75E5	u	ti	т	"	n
2-Nitroaniline	U			8.75E5	11	u	11	· · · · · · · · · · · · · · · · · · ·	Ħ
Dimethylphthalate	U			8.75E5	16	н	16	ls.	11

Danielle Kleinmaier, Chemist

Page 39 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-7, 9008-07 oil phase (1112001-08) Soil Sampled: Sep-13-11 11:17 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
1,3-Dinitrobenzene	U			8.75E5	ug/L	1	B112021	Sep-23-11	Oct-31-11
2,6-Dinitrotoluene	U			8.75E5	(t	11	u	н	16
Acenaphthylene	U			8.75E5	tt	н	- и	п	ıı
3-Nitroaniline	U	i i		4.38E6	U	11	u	и	tt
Acenaphthene	U	5		8.75E5	37	11	U	п	¢F
2,4-Dinitrophenol	U			8.75E5	11	n	H.	н	11.
Pentachlorobenzene	U			8.75E5	п	и	11	п	11
4-Nitrophenol	Ü	-		4.38E6	н	11	EN .	19	н
Dibenzofuran	U			8.75E5	и	11	п	· · · · · · · · · · · · · · · · · · ·	н
2,4-Dinitrotoluene	U			8.75E5	16	(1	11	и	**
2,3,4,6-Tetrachlorophenol	U	14.56		8.75E5	19	11	u)	н	19
Diethylphthalate	U			8.75E5	6)	п	H	п	16
Fluorene	U			8.75E5	ur	н	n	н	н
4-Chlorophenylphenyl ether	U		<i>a</i>	8.75E5	н	u	н	n	10
5-Nitro-o-toluidine	U			8.75E5	ii -	и	н	9	н
4-Nitroaniline	U			8.75E5	11	0	и	v	n

Danielle Kleinmaier. Chemist

Page 40 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-7, 9008-07 oil phase (1112001-08) Soil Sampled: Sep-13-11 11:17 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
4,6-Dinitro-2-methylphenol	U	*		4.38E6	ug/L	1	B112021	Sep-23-11	Oct-31-1
Diphenylamine	U			8.75E5	11	н	u	н	18
Azobenzene	U			8.75E5	n	п	н	**	н
Diallate (cis or trans)	U			8.75E5	tr	u	n	11	n
Phenacetin	U	51		8.75E5	18	н	u	N.	11
4-Bromophenyl phenyl ether	U			8.75E5	'n	n	н	11	95
Hexachlorobenzene	U		o *	8.75E5	u	10	н	19	11
Pentachlorophenol	U	J		4.38E6	10	н	u		t 9
Pentachloronitrobenzene	U	8.		8.75E5	u	19	п	H	н
Pronamide	U			8.75E5	u ,	11	"	it.	п
Phenanthrene	U		- -	8.75E5	ш	ij	n.	u.	u
Dinoseb	U			4.38E6	n	u	н	n.	11
Anthracene	U	-		8.75E5	11	11	11	0	п
Carbazole	U			8.75E5	11	n	H	W	u
Di-n-butylphthalate	U			8.75E5	'n	ıı	п	н	15
Isodrin	U	1 (propular		8.75E5	11	н	u	· ·	n

Danielle Kleinmaier, Chemist

Page 41 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-7, 9008-07 oil phase (1112001-08) Soil Sampled: Sep-13-11 11:17 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
Fluoranthene	U			8.75E5	ug/L	1	B112021	Sep-23-11	Oct-31-1
Benzidine	U	J	7	8.75E5	п	n	W	u	11
Pyrene	U			8.75E5	п	н	v	u	-11
p-Dimethylaminoazobenzene	U		*	8.75E5	н	11	u	v	11
Chlorobenzilate	U			8.75E5	н	n.	v	u	41
3,3'-Dimethylbenzidine	U			4.38E6	11	14	II.	u	"
Butylbenzylphthalate	U			4.38E6	11	- u	u	и	и
2-Acetylaminofluorene	U	To the second se		8.75E5	11	16	17	h	11
Benzo (a) anthracene	U		-	8.75E5	16	16	н	н	ıı
3,3'-Dichlorobenzidine	U			8.75E5	11	11	п	н	11
Chrysene	U			8.75E5	D.	tr.	11	n	н
Bis(2-ethylhexyl)phthalate	U			4.38E6	u	17	Ħ	н	н
Di-n-octylphthalate	- U			8.75E5	ti	n	#	. п	н .
Benzo(b)fluoranthene	U			8.75E5	ti ti	n.	11	п	11
Benzo(k)fluoranthene	U			8.75E5	н	II.	u	n	11.
Benzo(a)pyrene	U			8.75E5	11	н	11		11

Danielle Kleinmaier, Chemist

Page 42 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) US EPA Region 5 Chicago Regional Laboratory

BIP-7, 9008-07 oil phase (1112001-08) Soil Sampled: Sep-13-11 11:17 Received: Dec-06-11 12:37

Analyte	Result	Flags / Qualifiers	MDL	Limit	Units	Dilution	Batch	Prepared	Analyzed
3-Methylcholanthrene	U	Qualifiers	WIDL	8.75E5	ug/L	1	B112021	Sep-23-11	
o with the second secon							2.33.2.A.T.X.T.S	37, 23 11	00.01
Indeno(1,2,3-cd)pyrene	U			8.75E5	w	11	18	n	n
	U	1 1 · 1		8.75E5	11	н	n		
Dibenz(a,h)anthracene	O			8.7525			n	u	Ħ
Benzo(g,h,i)perylene	U			8.75E5	11	1)	11	11	11
Surrogate: 2-Fluorophenol	0.00				30.	6-99.6	"	"	,
Surrogate: Phenol-d5	0.00				34.	.2-102	"	"	,
Surrogate: Nitrobenzene-d5	0.00				39.	5-99.5	**	n	"
Surrogate: 2-Fluorobiphenyl	0.00				33.	.6-102	0	n	••
Surrogate: 2,4,6-Tribromophenol	0.00				65.	.7-126	"	n	"
Surrogate: Terphenyl-d14	0.00				60.	.7-121	11	"	"

Danielle Kleinmar

Page 43 of 55

Environmental Protection Agency Region 5

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B112021 - Solvent Extraction

Blank (B112021-BLK1)			Pr	epared: De	ec-13-11 A			1			
		Flags / Qualifiers		Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qualifiers	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
N-Nitrosodimethylamine	U			1.00	ug/L						
Pyridine	\mathbf{U}			1.00							
2-Picoline	\mathbf{U}			1.00	U						
N-Nitrosomethylethylamine	U			1.00	-11						
N-Nitrosodiethylamine	\mathbf{U}			1.00							
Ethyl methanesulfonate	U			1.00	87						
Aniline	\mathbf{U}			1.00	27						
Phenol	U			1.00	27						
Pentachloroethane	\mathbf{U}			5.00	11.						
Bis(2-chloroethyl)ether	\mathbf{U}			1.00	27						
2-Chlorophenol	\mathbf{U}			1.00	17						
1,3-Dichlorobenzene	\mathbf{U}			1.00	17						
1,4-Dichlorobenzene	\mathbf{U}			1.00	18						
1,2-Dichlorobenzene	\mathbf{U}			1.00	н						
2-Methylphenol	U			1.00	**						
Bis(2-chloroisopropyl)ether	U			1.00	n						
N-Nitrosopyrrolidine	\mathbf{U}			1.00	Ħ						
Acetophenone	\mathbf{U}			1.00	18						
N-Nitroso-di-n-propylamine	U			1.00	16						
-Toluidine	\mathbf{U}			1.00							
3-&/or 4-Methylphenol	\mathbf{U}			10.0							
Hexachloroethane	U			1.00	11						
Nitrobenzene	\mathbf{U}			1.00	13						
N-Nitrosopiperidine	\mathbf{U}			1.00	11						
sophorone	\mathbf{U}			1.00	17						
2-Nitrophenol	U			1.00	**						
2,4-Dimethylphenol	U			1.00	PT						
Bis(2-chloroethoxy)methane	U			1.00	H						
2,4-Dichlorophenol	U			1.00	PF						
1,2,4-Trichlorobenzene	U			1.00	ri-						
Naphthalene	U			1.00	at						
	U			1.00	21						
2,6-Dichlorophenol I-Chloroaniline	U			1.00	11						

Page 44 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B112021 - Solvent Extraction

Blank (B112021-BLK1)		Flags /	2.1	epared: De Reporting	- 10 111	Spike	Source	-	%REC	_	RPD
Analyte	Result	Qualifiers	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Hexachloropropene	U			1.00	ug/L	_					
Hexachlorobutadiene	\mathbf{U}			1.00	**						
N-Nitrosodi-n-butylamine	U			1.00	n						
4-Chloro-3-methylphenol	U			1.00	11						
Safrole	\mathbf{U}			1.00	н						
2-Methylnaphthalene	U			1.00	n						
Hexachlorocyclopentadiene	\mathbf{U}			5.00	n						
1,2,4,5-Tetrachlorobenzene	U			1.00	M						
2,4,6-Trichlorophenol	\mathbf{U}			1.00	.0						
2,4,5-Trichlorophenol	\mathbf{U}			1.00	11						
Isosafrole	U			1.00	n						
2-Chloronaphthalene	U			1.00	11						
2-Nitroaniline	U			1.00	11.						
Dimethylphthalate	U			1.00	.0						
1,3-Dinitrobenzene	\mathbf{U}			1.00	н						
2,6-Dinitrotoluene	U			1.00	n						
Acenaphthylene	U			1.00	**						
3-Nitroaniline	\mathbf{U}			5.00	11						
Acenaphthene	U			1.00	n						
2,4-Dinitrophenol	\mathbf{U}			1.00	8						
Pentachlorobenzene	\mathbf{U}			1.00	n						
4-Nitrophenol	U			5.00	17						
Dibenzofuran	\mathbf{U}			1.00	10						
2,4-Dinitrotoluene	\mathbf{U}			1.00	19						
2,3,4,6-Tetrachlorophenol	\mathbf{U}			1.00	H						
Diethylphthalate	\mathbf{U}			1.00	79						
Fluorene	U			1.00	91						
4-Chlorophenylphenyl ether	\mathbf{U}			1.00	19						
5-Nitro-o-toluidine	U			1.00	19						
4-Nitroaniline	U			1.00	n						
4,6-Dinitro-2-methylphenol	\mathbf{U} :			5.00	ii.						
Diphenylamine	U			1.00	91						
Azobenzene	\mathbf{U}			1.00	11						

Page 45 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B112021 - Solvent Extraction

Blank (B112021-BLK1)		Flags /	11	epared: De	U-10-11 A			1	%REC		DDD
Analyte	Result	Qualifiers	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%KEC	RPD	RPD Limit
•	U		MDL	1.00	ug/L	Level	Result	78ICEC	Limits	ND	Lillit
1,3,5-Trinitrobenzene	U			1.00	ug/L						
Diallate (cis or trans)	U				91						
Phenacetin	U			1.00	11						
4-Bromophenyl phenyl ether	U			1.00	11						
Hexachlorobenzene	U			1.00	11						
Pentachlorophenol	U			5.00							
Pentachloronitrobenzene				1.00	••						
Pronamide	U			1.00	1)						
Phenanthrene	U			1.00							
Dinoseb	U			5.00	**						
Anthracene	\mathbf{U}			1.00	**						
Carbazole	U			1.00	87						
Di-n-butylphthalate	U			1.00	10						
Isodrin	U			1.00	It -						
Fluoranthene	U			1.00	n						
Benzidine	U			1.00	11						
Pyrene	U			1.00	11						
p-Dimethylaminoazobenzene	U			1.00	11						
Chlorobenzilate	U			1.00	10						
3,3'-Dimethylbenzidine	\mathbf{U}			5.00	19						
Butylbenzylphthalate	U			5.00	16						
2-Acetylaminofluorene	U			1.00	W						
Benzo (a) anthracene	U			1.00	11						
3,3'-Dichlorobenzidine	U			1.00	H.						
Chrysene	U			1.00	ar.						
Bis(2-ethylhexyl)phthalate	U			5.00	It.						
Di-n-octylphthalate	U			1.00	n.						
Benzo(b)fluoranthene	U			1.00	rt						
Benzo(k)fluoranthene	U			1.00	11						
Benzo(a)pyrene	Ú			1.00	n						
3-Methylcholanthrene	U			1.00	п						
Indeno(1,2,3-cd)pyrene	U			1.00	11						
Dibenz(a,h)anthracene	U			1.00	11						

Page 46 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B112021 - Solvent Extraction

Blank (B112021-BLK1)			Pr	epared: De	c-13-11 A	nalyzed:	Dec-22-1	1			
		Flags /		Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qualifiers	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Benzo(g,h,i)perylene	U			1.00	ug/L						
Surrogate: 2-Fluorophenol	38.9			16	n.	50.00	,	77.8	30.6-99.6		
Surrogate: Phenol-d5	42.3				"	50.00		84.5	34.2-102		
Surrogate: Nitrobenzene-d5	39.1				**	50.00		78.2	39.5-99.5		
Surrogate: 2-Fluorobiphenyl	32.2				11	50.00		64.5	33.6-102		
Surrogate: 2,4,6-Tribromophenol	44.0				o	50.00		87.9	65.7-126		
Surrogate: Terphenyl-d14	43.5		41		"	50.00		87.0	60.7-121		

		Pr	epared: De	ec-13-11 A	nalyzed:	Dec-22-1	1			
Result	Flags / Qualifiers	MDL	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
18.9			1.00	ug/L	25.00		75.8	21.6-121		
15.6			1.00	н	25.00		62.5	20-122		
20.0			1.00	91	25.00		80.1	20-148		
21.3			1.00	17	25.00		85.4	20-121		
19.7			1.00	u	25.00		78.6	20-152		
19.9			1.00	13	25.00		79.5	20-138		
18.7			1.00	11	25.00		74.7	20-157		
20.7			1.00	n	25.00		82.9	20-119		
11.2			5.00	n .	25.00		44.8	20-82.9		
19.8			1.00	**	25.00		79.0	32.6-103		
19.9			1.00	10	25.00		79.7	20-113		
10.3			1.00	11	25.00		41.3	20-79.3		
10.6			1.00	н	25.00		42.6	20-80.4		
11.4			1.00	17	25.00		45.7	20-86.2		
15.8			1.00	17	25.00		63.2	31.4-115		
19.7			1.00	17	25.00		78.8	30.7-105		
	18.9 15.6 20.0 21.3 19.7 19.9 18.7 20.7 11.2 19.8 19.9 10.3 10.6 11.4 15.8	Result Qualifiers 18.9 15.6 20.0 21.3 19.7 19.9 18.7 20.7 11.2 19.8 19.9 10.3 10.6 11.4 15.8	Flags / Qualifiers MDL 18.9 15.6 20.0 21.3 19.7 19.9 18.7 20.7 11.2 19.8 19.9 10.3 10.6 11.4 15.8	Result Flags / Qualifiers Reporting MDL Reporting Limit 18.9 1.00 15.6 1.00 20.0 1.00 1.00 1.00 21.3 1.00 19.7 1.00 19.7 1.00 19.9 1.00 18.7 1.00 1.00 20.7 1.00 11.00 11.2 5.00 19.8 19.9 1.00 1.00 10.3 1.00 1.00 10.6 1.00 1.00 11.4 1.00 1.00 15.8 1.00 1.00	Result Qualifiers MDL Limit Units 1.00	Result Flags / Qualifiers Reporting MDL Reporting Limit Spike Level 18.9 1.00 ug/L 25.00 15.6 1.00 " 25.00 20.0 1.00 " 25.00 21.3 1.00 " 25.00 19.7 1.00 " 25.00 19.9 1.00 " 25.00 18.7 1.00 " 25.00 20.7 1.00 " 25.00 11.2 5.00 " 25.00 19.8 1.00 " 25.00 19.9 1.00 " 25.00 10.3 1.00 " 25.00 10.6 1.00 " 25.00 11.4 1.00 " 25.00 15.8 1.00 " 25.00	Result Qualifiers MDL Limit Units Level Result	Result Qualifiers MDL Limit Units Level Result %REC 18.9 1.00 ug/L 25.00 75.8 15.6 1.00 " 25.00 62.5 20.0 1.00 " 25.00 80.1 21.3 1.00 " 25.00 78.6 19.7 1.00 " 25.00 79.5 18.7 1.00 " 25.00 74.7 20.7 1.00 " 25.00 82.9 11.2 5.00 " 25.00 79.0 19.9 1.00 " 25.00 79.7 10.3 1.00 " 25.00 79.7 10.3 1.00 " 25.00 41.3 10.6 1.00 " 25.00 42.6 11.4 1.00 " 25.00 45.7 15.8 1.00 " 25.00 63.2	Result Flags / Qualifiers Reporting Limit Spike Level Source Result %REC Limits 18.9 1.00 ug/L 25.00 75.8 21.6-121 15.6 1.00 " 25.00 62.5 20-122 20.0 1.00 " 25.00 80.1 20-148 21.3 1.00 " 25.00 85.4 20-121 19.7 1.00 " 25.00 78.6 20-152 19.9 1.00 " 25.00 79.5 20-138 18.7 1.00 " 25.00 74.7 20-157 20.7 1.00 " 25.00 74.7 20-157 20.7 1.00 " 25.00 79.0 32.6-103 19.9 1.00 " 25.00 79.0 32.6-103 19.9 1.00 " 25.00 79.7 20-113 10.3 1.00 " 25.00 79.7 20-113 1	Result Flags / Qualifiers Reporting Limit Spike Limit Source Result %REC Limits RPD 18.9 1.00 ug/L 25.00 75.8 21.6-121 15.6 1.00 " 25.00 62.5 20-122 20.0 1.00 " 25.00 80.1 20-148 21.3 1.00 " 25.00 85.4 20-121 19.7 1.00 " 25.00 78.6 20-152 19.9 1.00 " 25.00 79.5 20-138 18.7 1.00 " 25.00 74.7 20-157 20.7 1.00 " 25.00 82.9 20-119 11.2 5.00 " 25.00 44.8 20-82.9 19.8 1.00 " 25.00 79.0 32.6-103 19.9 1.00 " 25.00 79.7 20-113 10.3 1.00 " 25.00 79.7 20-113

Page 47 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B112021 - Solvent Extraction

LCS (B112021-BS1)			Pr	epared: De	c-13-11 A	nalyzed:	Dec-22-1	1			
		Flags /		Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qualifiers	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
N-Nitrosopyrrolidine	18.8			1.00	ug/L	25.00		75.2	20-203		
Acetophenone	20.6			1.00	•	25.00		82.5	36.8-110		
N-Nitroso-di-n-propylamine	19.4			1.00	"	25.00		77.8	21.3-138		
o-Toluidine	18.9			1.00	n	25.00		75.4	20-120		
3-&/or 4-Methylphenol	35.6			10.0	н	50.00		71.2	45.5-106		
Hexachloroethane	8.51			1.00	74	25.00		34.0	20-70.6		
Nitrobenzene	19.6			1.00	n	25.00		78.3	33.5-109		
N-Nitrosopiperidine	20.6			1.00	н	25.00		82.3	20-140		
Isophorone	20.8			1.00	Ħ	25.00		83.2	42.4-111		
2-Nitrophenol	21.7			1.00	н	25.00		86.7	20-125		
2,4-Dimethylphenol	4.00			1.00	н	25.00		16.0	43.1-107		
Bis(2-chloroethoxy)methane	20.6			1.00	и	25.00		82.6	34.8-114		
2,4-Dichlorophenol	21.9			1.00	11	25.00		87.6	20-131		
1,2,4-Trichlorobenzene	11.0			1.00	U	25.00		44.0	20-90		
Naphthalene	15.0			1.00	11	25.00		59.9	23.6-99.2		
2,6-Dichlorophenol	21.1			1.00	11	25.00		84.3	40.5-113		
4-Chloroaniline	19.2			1.00	n	25.00		76.9	20-148		
Hexachloropropene	4.31			1.00	19	25.00		17.2	20-85.3		
Hexachlorobutadiene	8.76			1.00	М	25.00		35.0	20-79.8		
N-Nitrosodi-n-butylamine	21.5			1.00	11	25.00		86.0	29.8-144		
4-Chloro-3-methylphenol	21.3			1.00	H	25.00		85.2	57.1-124		
Safrole	18.0			1.00	11	25.00		71.8	35.5-109		
2-Methylnaphthalene	14.4			1.00	11	25.00		57.4	20.5-109		
Hexachlorocyclopentadiene	U			5.00	tt	25.00			20-108		
1,2,4,5-Tetrachlorobenzene	13.6			1.00	u	25.00		54.4	20-110		
2,4,6-Trichlorophenol	22.6			1.00	0	25.00		90.3	45.5-123		
2,4,5-Trichlorophenol	21.6			1.00	**	25.00		86.5	53-129		
Isosafrole	19.0			1.00	Ft.	25.00		75.9	22.9-130		
2-Chloronaphthalene	15.7			1.00	11	25.00		63.0	22.8-113		
2-Nitroaniline	24.7			1.00	21	25.00		98.8	61.2-129		
Dimethylphthalate	24.3			1.00	11	25.00		97.2	20-155		
1,3-Dinitrobenzene	21.4			1.00	11	25.00		85.6	57.7-142		
2.6-Dinitrotoluene	23.4			1.00	16	25.00	4)	93.8	63.1-125		

Page 48 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B112021 - Solvent Extraction

LCS (B112021-BS1)													
			-	Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Qualifiers	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit		
Acenaphthylene	16.9			1.00	ug/L	25.00		67.5	40-113				
3-Nitroaniline	22.4			5.00	11	25.00		89.6	44.1-160				
Acenaphthene	17.7	79		1.00	н	25.00		70.6	36.1-115				
2,4-Dinitrophenol	18.4			1.00	11	25.00		73.7	20-179				
Pentachlorobenzene	17.9			1.00	17	25.00		71.5	34.2-119				
4-Nitrophenol	23.2			5.00	11	25.00		92.7	32-163				
Dibenzofuran	18.1			1.00	13	25.00		72.4	41.2-117				
2,4-Dinitrotoluene	24.0			1.00	н	25.00		96.1	68.4-131				
2,3,4,6-Tetrachlorophenol	22.2			1.00	н	25.00		88.9	63.2-123				
Diethylphthalate	23.4			1.00	**	25.00		93.4	23.7-145				
Fluorene	19.1			1.00	11	25.00		76.5	46.7-120				
4-Chlorophenylphenyl ether	18.3			1.00	11	25.00		73.1	44-118				
5-Nitro-o-toluidine	23.5			1.00	. 10	25.00		94.2	55.9-150				
4-Nitroaniline	17.6			1.00	н	25.00		70.3	48.5-154				
4,6-Dinitro-2-methylphenol	21.3			5.00	н	25.00		85.3	56-152				
Diphenylamine	21.9			1.00	11	25.00		87.6	59-124				
Azobenzene	20.8			1.00	17	25.00		83.4	47-121				
1,3,5-Trinitrobenzene	16.0			1.00	**	25.00		64.1	66.2-128				
Diallate (cis or trans)	22.1			1.00	11	25.00		88.4	52.1-122				
Phenacetin	26.0			1.00	н	25.00		104	62-146				
4-Bromophenyl phenyl ether	20.2			1.00	H	25.00		80.9	50.9-118				
Hexachlorobenzene	20.3			1.00		25.00		81.1	44.5-123				
Pentachlorophenol	17.1			5.00	11	25.00		68.6	48.3-140				
Pentachloronitrobenzene	21.3			1.00	2 10	25.00		85.1	52.9-128				
Pronamide	24.9			1.00	n	25.00		99.6	69.4-131				
Phenanthrene	20.3			1.00	н.	25.00		81.2	50.1-122				
Dinoseb	19.6			5.00	н	25.00		78.2	20.1-170				
Anthracene	19.4			1.00	81	25.00		77.6	52.3-123				
Carbazole	21.2			1.00	11	25.00		84.7	58.4-138				
Di-n-butylphthalate	22.1			1.00	11	25.00		88.4	59.5-124				
Isodrin	19.7			1.00	10	25.00		78.8	25.8-149				
Fluoranthene	20.0			1.00	11	25.00		80.1	53.3-126				
Benzidine	3.87			1.00	н	25.00		15.5	20-127				

Page 49 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604

Project: Blue Island Phenols

Project Number: [none] Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B112021 - Solvent Extraction

LCS (B112021-BS1)			Pre	pared: De	ec-13-11 A	Analyzed:	Dec-22-1	1			
		Flags /		Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qualifiers	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Pyrene	22.0	*		1.00	ug/L	25.00		88.0	51.1-127		
p-Dimethylaminoazobenzene	21.3			1.00	n -	25.00		85.4	65-125		
Chlorobenzilate	22.5			1.00	**	25.00		89.9	60.7-121		
3,3'-Dimethylbenzidine	5.13			5.00	н	25.00		20.5	20-229		
Butylbenzylphthalate	22.4			5.00	11	25.00		89.5	54.2-128		
2-Acetylaminofluorene	21.1			1.00	H	25.00		84.6	59.7-156		
Benzo (a) anthracene	20.2			1.00	n	25.00		80.8	48.2-124		
3,3'-Dichlorobenzidine	20.4			1.00	İŤ	25.00		81.8	46.2-154		
Chrysene	20.5			1.00	11	25.00		82.2	49-126		
Bis(2-ethylhexyl)phthalate	24.0			5.00	n	25.00		96.2	20-163		
Di-n-octylphthalate	23.1			1.00	n	25.00		92.3	20-168		
Benzo(b)fluoranthene	21.6			1.00	n	25.00		86.5	29.6-149		
Benzo(k)fluoranthene	21.8			1.00	п	25.00		87.4	20-170		
Benzo(a)pyrene	19.6			1.00	11	25.00		78.6	26.7-156		
3-Methylcholanthrene	13.7			1.00	Ħ	25.00		54.9	20-159		
Indeno(1,2,3-cd)pyrene	21.5			1.00	11	25.00		86.1	24-157		
Dibenz(a,h)anthracene	21.8			1.00	11	25.00		87.4	26.5-156		
Benzo(g,h,i)perylene	22.2			1.00	n	25.00		88.6	20-159		
0 25	10.3					25.00	- 1	72.7	20 (00)		
Surrogate: 2-Fluorophenol	18.3				"	25.00		73.1	30.6-99.6		
Surrogate: Phenol-d5	20.7				11	25.00		82.7	34.2-102		
Surrogate: Nitrobenzene-d5	19.9				"	25.00		79.6	39.5-99.5		
Surrogate: 2-Fluorobiphenyl	17.8					25.00		71.2	33.6-102		
Surrogate: 2,4,6-Tribromophenol	23.4				."	25.00		93.8	65.7-126		
Surrogate: Terphenyl-d14	21.1				"	25.00		84.6	60.7-121		

LCS Dup (B112021-BSD1)

Prepared: Dec-13-11 Analyzed: Dec-22-11

Page 50 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B112021 - Solvent Extraction

		Flags /	10	Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qualifiers	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
N-Nitrosodimethylamine	20.3			1.00	ug/L	25.00		81.2	21.6-121	6.98	39.5
Pyridine	17.0			1.00	11	25.00		68.2	20-122	8.69	82.1
2-Picoline	16.3			1.00	11	25.00		65.2	20-148	20.5	41.2
N-Nitrosomethylethylamine	22.6			1.00	11	25.00		90.2	20-121	5.51	58.1
N-Nitrosodiethylamine	21.6			1.00	- н	25.00		86.3	20-152	9.31	33.7
Ethyl methanesulfonate	20.3			1.00	-17	25.00		81.3	20-138	2.19	38
Aniline	19.2			1.00	17	25.00		76.7	20-157	2.69	51.8
Phenol	21.5			1.00	11	25.00		86.1	20-119	3.83	35.8
Pentachloroethane	12.2			5.00	n	25.00		48.7	20-82.9	8.47	45.8
Bis(2-chloroethyl)ether	20.4			1.00	11	25.00		81.4	32.6-103	2.99	38.4
2-Chlorophenol	20.7			1.00	12.	25.00		82.7	20-113	3.70	38.3
1,3-Dichlorobenzene	11.5			1.00	11	25.00		45.8	20-79.3	10.5	44.3
1,4-Dichlorobenzene	11.6			1.00	н .	25.00		46.4	20-80.4	8.63	41.6
1,2-Dichlorobenzene	12.3			1.00	п	25.00		49.1	20-86.2	7.18	40.9
2-Methylphenol	17.7			1.00	11	25.00		70.8	31.4-115	11.3	41.3
Bis(2-chloroisopropyl)ether	20.1			1.00	17	25.00		80.3	30.7-105	1.96	41.1
N-Nitrosopyrrolidine	21.9			1.00	11	25.00		87.6	20-203	15.1	29.8
Acetophenone	21.4			1.00	n	25.00		85.6	36.8-110	3.71	35.5
N-Nitroso-di-n-propylamine	21.7			1.00	n	25.00		87.0	21.3-138	11.2	32.1
o-Toluidine	21.1			1.00	••	25.00		84.4	20-120	11.2	159
3-&/or 4-Methylphenol	39.5			10.0	11	50.00		78.9	45.5-106	10.3	30
Hexachloroethane	9.86			1.00	11	25.00		39.4	20-70.6	14.7	52.7
Nitrobenzene	20.2			1.00	n	25.00		80.8	33.5-109	3.12	37.2
N-Nitrosopiperidine	21.3			1.00	п	25.00		85.4	20-140	3.67	30.4
Isophorone	21.6			1.00	17	25.00		86.5	42.4-111	3.91	30.3
2-Nitrophenol	22.8			1.00	17	25.00		91.2	20-125	5.04	38.9
2,4-Dimethylphenol	5.35			1.00	11	25.00		21.4	43.1-107	28.9	31.4
Bis(2-chloroethoxy)methane	21.0			1.00	11	25.00		83.8	34.8-114	1.44	35.7
2,4-Dichlorophenol	22.6			1.00	46	25.00		90.2	20-131	2.97	31.9
1,2,4-Trichlorobenzene	12.0			1.00	41	25.00		48.2	20-90	9.12	41.9
Naphthalene	15.5			1.00	10	25.00		62.1	23.6-99.2	3.54	36.8
2,6-Dichlorophenol	21.2			1.00	11	25.00		84.6	40.5-113	0.379	32.3
4-Chloroaniline	21.6			1.00	n	25.00		86.3	20-148	11.6	21
Hexachloropropene	4.85			1.00	n	25.00		19.4	20-85.3	11.8	40.2

Page 51 of 55

Environmental Protection Agency Region 5

Chicago Regional Laboratory

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5

77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B112021 - Solvent Extraction

		Flags /		Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qualifiers	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Hexachlorobutadiene	9.96			1.00	ug/L	25.00		39.8	20-79.8	12.8	47.2
N-Nitrosodi-n-butylamine	24.1			1.00	ij	25.00		96.5	29.8-144	11.5	20.5
4-Chloro-3-methylphenol	22.6			1.00	77	25.00		90.5	57.1-124	6.06	22.4
Safrole	19.1			1.00	Ħ.	25.00		76.5	35.5-109	6.26	34.1
2-Methylnaphthalene	15.3			1.00	PT	25.00		61.0	20.5-109	6.15	36.1
Hexachlorocyclopentadiene	U			5.00	H	25.00			20-108		41.8
1,2,4,5-Tetrachlorobenzene	14.1			1.00	н	25.00		56.4	20-110	3.68	32.1
2,4,6-Trichlorophenol	22.8			1.00	н	25.00		91.4	45.5-123	1.19	17.1
2,4,5-Trichlorophenol	22.0			1.00	11	25.00		88.0	53-129	1.74	16.6
Isosafrole	19.2			1.00	11	25.00		77.0	22.9-130	1.41	22.7
2-Chloronaphthalene	16.3			1.00	-11	25.00		65.2	22.8-113	3.43	38.3
2-Nitroaniline	24.7			1.00	11	25.00		98.8	61.2-129	0.00	14.4
Dimethylphthalate	24.6			1.00	tt	25.00		98.4	20-155	1.27	10.1
1,3-Dinitrobenzene	22.0			1.00	47	25.00		88.0	57.7-142	2.76	14.8
2,6-Dinitrotoluene	24.8			1.00	Pf.	25.00		99.4	63.1-125	5.80	11.7
Acenaphthylene	17.7			1.00	17	25.00		70.8	40-113	4.74	18.2
3-Nitroaniline	25.3			5.00	er	25.00		101	44.1-160	12.3	13.8
Acenaphthene	18.3			1.00	II	25.00		73.4	36.1-115	3.78	17.7
2,4-Dinitrophenol	21.5			1.00	В	25.00		85.9	20-179	15.2	92.6
Pentachlorobenzene	18.4			1.00	11	25.00		73.6	34.2-119	2.92	14.6
4-Nitrophenol	26.7			5.00	k W	25.00		107	32-163	14.2	12
Dibenzofuran	18.8			1.00	17	25.00		75.4	41.2-117	3.95	15
2,4-Dinitrotoluene	24.9			1.00	41	25.00		99.7	68.4-131	3.64	11.2
2,3,4,6-Tetrachlorophenol	23.1			1.00	**	25.00		92.3	63.2-123	3.71	10.4
Diethylphthalate	24.2			1.00	11	25.00		96.6	23.7-145	3.41	9.17
Fluorene	20.1			1.00	η	25.00		80.6	46.7-120	5.14	12.9
4-Chlorophenylphenyl ether	19.2			1.00	H	25.00		76.7	44-118	4.86	12.8
5-Nitro-o-toluidine	25.1			1.00	11	25.00		100	55.9-150	6.49	13
4-Nitroaniline	22.9			1.00	n	25.00		91.7	48.5-154	26.4	24.2
4,6-Dinitro-2-methylphenol	22.8			5.00	11	25.00		91.1	56-152	6.53	15.2
Diphenylamine	22.0			1.00	11	25.00		88.1	59-124	0.501	9.46
Azobenzene	20.8			1.00	.17	25.00		83.3	47-121	0.0960	10.9
1,3,5-Trinitrobenzene	19.7			1.00	11	25.00		78.6	66.2-128	20.4	15.8

Page 52 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B112021 - Solvent Extraction

LCS Dup (B112021-BSD1)			Pr	epared: De	c-13-11 A	-		1			
		Flags /		Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qualifiers	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Diallate (cis or trans)	22.4		3	1.00	ug/L	25.00		89.6	52.1-122	1.30	9.73
Phenacetin	26.5			1.00	.11	25.00		106	62-146	1.94	10.8
4-Bromophenyl phenyl ether	20.7			1.00	tr	25.00		82.7	50.9-118	2.20	12.1
Hexachlorobenzene	20.4			1.00	n	25.00		81.8	44.5-123	0.786	10.2
Pentachlorophenol	19.5			5.00	11	25.00		78.0	48.3-140	12.9	14.4
Pentachloronitrobenzene	22.2			1.00	н	25.00		88.9	52.9-128	4.37	12.2
Pronamide	25.0			1.00	11	25.00		100	69.4-131	0.521	10
Phenanthrene	20.2			1.00	н	25.00		80.9	50.1-122	0.395	8.1
Dinoseb	23.2			5.00	**	25.00		93.0	20.1-170	17.3	14.5
Anthracene	20.0			1.00	н	25.00		79.8	52.3-123	2.85	8.8
Carbazole	22.3			1.00	н	25.00		89.2	58.4-138	5.11	9.72
Di-n-butylphthalate	22.8			1.00	11	25.00		91.3	59.5-124	3.25	9.27
Isodrin	20.4			1.00	11	25.00		81.8	25.8-149	3.74	9.61
Fluoranthene	21.5			1.00	n	25.00		86.0	53.3-126	7.13	10.1
Benzidine	5.69			1.00	37	25.00		22.8	20-127	38.1	92.5
Pyrene	22.1			1.00	11	25.00		88.3	51.1-127	0.272	10.3
p-Dimethylaminoazobenzene	22.8			1.00	H	25.00		91.3	65-125	6.70	16.6
Chlorobenzilate	23.8			1.00	n	25.00		95.0	60.7-121	5.54	8.64
3,3'-Dimethylbenzidine	5.32			5.00	A	25.00		21.3	20-229	3.64	56.8
Butylbenzylphthalate	23.4			5.00	n	25.00		93.7	54.2-128	4.54	8.95
2-Acetylaminofluorene	22.7			1.00	11	25.00		90.8	59.7-156	7.07	13
Benzo (a) anthracene	20.8			1.00	11	25.00		83.0	48.2-124	2.74	8.91
3,3'-Dichlorobenzidine	23.2			1.00	n	25.00		92.9	46.2-154	12.7	22.9
Chrysene	21.2			1.00	н	25.00		84.9	49-126	3.30	10.4
Bis(2-ethylhexyl)phthalate	23.9			5.00	et	25.00		95.6	20-163	0.542	44.8
Di-n-octylphthalate	24.3			1.00	92	25.00		97.1	20-168	5.07	12
Benzo(b)fluoranthene	21.8			1.00	11	25.00		87.4	29.6-149	0.966	26.8
Benzo(k)fluoranthene	22.1			1.00	· ·	25.00		88.4	20-170	1.18	16.2
Benzo(a)pyrene	20.0			1.00	19	25.00		80.0	26.7-156	1.87	11.2
3-Methylcholanthrene	13.5			1.00	h	25.00		54.1	20-159	1.47	13.9
Indeno(1,2,3-cd)pyrene	22.0			1.00	91	25.00		88.0	24-157	2.16	13.7
Dibenz(a,h)anthracene	22.4			1.00	41	25.00		89.4	26.5-156	2.35	13.9
Benzo(g,h,i)perylene	22.2			1.00	**	25.00		88.8	20-159	0.225	13.5

Page 53 of 55

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604

Project: Blue Island Phenols

Project Number: [none] Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Semivolatiles by GC/MS, EPA 8270C (modified) - Quality Control US EPA Region 5 Chicago Regional Laboratory

Batch B112021 - Solvent Extraction

		Pre	epared: De	c-13-11 A	analyzed:	Dec-22-1	1			
	Flags /		Reporting		Spike	Source		%REC		RPD
Result Qualifiers	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
18.2				ug/L	25.00		72.8	30.6-99.6		
22.2				**	25.00		88.9	34.2-102		
20.4				"	25.00		81.4	39.5-99.5		
16.8				"	25.00		67.4	33.6-102		
23.3				11	25.00		93.2	65.7-126		
20.9				11	25.00		83.5	60.7-121		
	18.2 22.2 20.4 16.8 23.3	Result Qualifiers 18.2 22.2 20.4 16.8 23.3	Flags / Qualifiers MDL 18.2 22.2 20.4 16.8 23.3	Result Qualifiers MDL Limit 18.2 22.2 20.4 16.8 23.3	Result Plags / Qualifiers MDL Limit Units	Result Qualifiers MDL Limit Units Level	Result Plags / Qualifiers MDL Limit Units Spike Source Level Result	Result Qualifiers MDL Limit Units Level Result %REC 18.2 ug/L 25.00 72.8 22.2 " 25.00 88.9 20.4 " 25.00 81.4 16.8 " 25.00 67.4 23.3 " 25.00 93.2	Result Qualifiers MDL Limit Units Spike Source Result %REC Limits	Result Qualifiers MDL Limit Units Spike Source Result %REC Limits RPD

Page 54 of 55 Report Name: 1112001 FINAL Jan 04 12 1302

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

RCRA, LCD, US EPA Region 5 77 West Jackson Boulevard Chicago IL, 60604 Project: Blue Island Phenols

Project Number: [none]
Project Manager: Mike Beedle

Reported: Jan-04-12 13:02

Notes and Definitions

R Rejected

J The identification of the analyte is acceptable; the reported value is an estimate.

U Not Detected

NR Not Reported

Page 55 of 55

Items for Project Manager Review

LabNumber	Analysis	Analyte	Exception
			Default Report (not modified)
			VERSION 6.08:2014
	SVOA Expanded List	(Water)	RPD calculations based on %Recovery
	SVOA Expanded List	(Water)	Special Units: (ug/L)
1112001-01	SVOA Expanded List		Sampled->Prepared > 7.00 days
1112001-01	SVOA Expanded List	Hexachlorocyclopentadiene	R: Rejected
1112001-02	SVOA Expanded List		Sampled->Prepared > 7.00 days
1112001-02	SVOA Expanded List	2,4,6-Tribromophenol	Exceeds lower control limit
1112001-02	SVOA Expanded List	Hexachlorocyclopentadiene	R: Rejected
1112001-03	SVOA Expanded List		Sampled->Prepared > 7.00 days
1112001-03	SVOA Expanded List	Hexachlorocyclopentadiene	R: Rejected
1112001-04	SVOA Expanded List		Sampled->Prepared > 7.00 days
1112001-04	SVOA Expanded List		Sampled->Prepared > 7.00 days
1112001-04	SVOA Expanded List	Hexachlorocyclopentadiene	R: Rejected
1112001-05	SVOA Expanded List		Sampled->Prepared > 7.00 days
1112001-05	SVOA Expanded List		Sampled->Prepared > 7.00 days
1112001-05	SVOA Expanded List	Hexachlorocyclopentadiene	R; Rejected
1112001-08	SVOA Expanded List		Missing 1,3,5-Trinitrobenzene
1112001-08	SVOA Expanded List		Missing 4-Chloroaniline
1112001-08	SVOA Expanded List		Soil batched as Water
1112001-08	SVOA Expanded List	2,4,6-Tribromophenol	No spike level
1112001-08	SVOA Expanded List	2-Fluorobiphenyl	No spike level
1112001-08	SVOA Expanded List	2-l-Tuorophenol	No spike level
1112001-08	SVOA Expanded List	Nitrobenzene-d5	No spike level
1112001-08	SVOA Expanded List	Phenol-d5	No spike level
1112001-08	SVOA Expanded List	Terphenyl-d14	No spike level
B112021-BS1	SVOA Expanded List	1,3,5-Trinitrobenzene	Exceeds lower control limit
B112021-BS1	SVOA Expanded List	2,4-Dimethylphenol	Exceeds lower control limit
B112021-BS1	SVOA Expanded List	Benzidine	Exceeds lower control limit
B112021-BS1	SVOA Expanded List	Hexachlorocyclopentadiene	Spike recovery below MDL
B112021-BS1	SVOA Expanded List	Hexachloropropene	Exceeds lower control limit
B112021-BSD1	SVOA Expanded List	1,3,5-Trinitrobenzene	Exceeds RPD control limit
B112021-BSD1	SVOA Expanded List	2,4-Dimethylphenol	Exceeds lower control limit
B112021-BSD1	SVOA Expanded List	4-Nitroaniline	Exceeds RPD control limit
B112021-BSD1	SVOA Expanded List	4-Nitrophenol	Exceeds RPD control limit
B112021-BSD1	SVOA Expanded List	Dinoseb	Exceeds RPD control limit
B112021-BSD1	SVOA Expanded List	Hexachlorocyclopentadiene	Spike recovery below MDL
B112021-BSD1	SVOA Expanded List	Hexachloropropene	Exceeds lower control limit

Sample, Log and Extraction Comments

Analysis: SVOA
Matrix: water

Project: Blue Island Phenols
Work Order #: 1112001

Analyst: Danielle Kleinmaier
Date: 1/4/2011

ANALYSIS CASE NARRATIVE

Analyst Phone Number: 312.353.9771

OK/ HAT

General Information

Six water samples were originally received for the Toxicity Characteristic Leaching Procedure (TCLP) of Semi-Volatile Organic Analysis (SVOA) compounds on September 13th, 2011 (work order 1109008). On December 6th 2011, the client requested that these same samples be re-evaluated for SVOA compounds by continuous liquid-liquid extraction (work order 1112001). Since the samples had exceeded their extraction holding times, all reported re-extraction data was flagged as estimated ('J').

Sample preparation and analysis occurred via the Chicago Regional Laboratory standard operating procedure (CRL SOP) MS026 Revision # 7.0.

All the supporting data for LIMS ID 1112001-08 (BIP-7, oil phase) is located in the data package for work order 1109008.

Sample Analysis and Results

All of the samples were re-extracted except for BIP-7. Phase separation had occurred in this sample container and the aqueous phase was no longer available. The organic/oil phase was simply diluted and analyzed. Since the organic phase was not extracted, no surrogates were spiked into that fraction of the sample. Separate LIMS IDs were generated for each phase of BIP-7. The organic phase was reported as LIMS ID 1112001-08. Since the aqueous phase could not be re-extracted, LIMS IDs 1112001-06 and -07 do not appear in the report.

Quality Controls

Instrument Performance Check

The benzidine tailing factor failed the instrument performance check criteria in the DFTPP injection for the 10/31/11 sequence (6C11103101.D), affecting the waste dilution of field sample BIP-7 (LIMS ID 1112001-08). The instrument sensitivity for the basic compounds analyzed after said failed tailing factor was demonstrated by a 1 ng/uL calibration standard injection at the end of the sequence. All basic compounds were recovered with the exception of 4-chloroaniline and 1,3,5-trinitrobenzene. These two compounds do not appear in the report for LIMS ID 1112001-08.

Continuing Calibration Verification (CCV)

The closing CCV injection affecting the injections of undiluted field samples BIP-2 (LIMS ID 1112001-02), BIP-4 (LIMS ID 1112001-04), and BIP-5 (LIMS ID 1112001-05) analyzed on 12/22/11 exceeded the % difference criteria of $\leq 25\%$ for hexachlorocyclopentadiene.

The CCV injections bracketing the injection of the waste dilution of field sample BIP-7 (LIMS ID 1112001-08) analyzed on 10/31/11 exceeded the %D criteria for pentachlorophenol and benzidine.

Analysis: SVOA Matrix: water	
Project: Blue Island Phenols Work Order #: 1112001	Analyst: Danielle Kleinmaier Date: 1/4/2011

Results for these compounds were flagged as estimated ('J') in the report.

Blank Spike Recovery (B112021)

In both the blank spike and blank spike duplicate, 2,4-dimethylphenol and hexachloropropene had calculated recoveries below their respective lower control limits. Neither of these compounds were detected in any of the field samples. These compounds were flagged as estimated ('J') in the report.

Hexachlorocyclopentadiene was not recovered in either blank spike QC sample. This compound was not detected in any of the field samples and was, thus, rejected.

All other quality controls not mentioned here passed the SOP criteria.

Signature	Date

536 South Clark Street, Chicago, IL 60605 Phone:(312)353-8370 Fax:(312)886-2591

WORK ORDER

Printed: 12/12/2011 4:23:37PM

1112001

US EPA Region 5 Chicago Regional Laboratory

Client: RCRA, LCD, US EPA Region 5

Project Manager:

Angela Ockrassa

Project: Blue Island Phenols

Project Number:

[none]

Report To:

Mike Beedle

77 West Jackson Boulevard

Phone: 3-7922

RCRA, LCD, US EPA Region 5

Chicago, IL 60604

Fax: (312)353-4342

Date Due:

Jan-23-12 15:00 (45 day TAT)

Received By:

Amanda Wroble

Date Received:

Dec-06-11 12:37

Logged In By:

Amanda Wroble

Date Logged In:

Dec-06-11 12:37

Samples Received at:

Sample tags/labels

Yes

Seals Intact

Yes

Received on ice

Yes

Paperwork Included Yes

Analysis	Due	TAT	Expires	Comments
1112001-01 BIP-1 [Wate	r] Sampled Sep-13-11 0	9:15 Centi	ral	
SVOA Expanded List	Jan-07-12 12:00	30	Sep-20-11 09:15	
1112001-02 BIP-2 [Wate	r] Sampled Sep-13-11 0	9:21 Cent	ral	
SVOA Expanded List	Jan-07-12 12:00	30	Sep-20-11 09:21	
1112001-03 BIP-3 [Wate	r] Sampled Sep-13-11 0	9:29 Cent	ral	
SVOA Expanded List	Jan-07-12 12:00	30	Sep-20-11 09:29	·
1112001-04 BIP-4 [Wate	r] Sampled Sep-13-11 1	0:07 Cent	ral	
SVOA Expanded List	Jan-07-12 12:00	30	Sep-20-11 10:07	B*
1112001-05 BIP-5 [Wate	r] Sampled Sep-13-11 1	0:18 Cent	ral	
SVOA Expanded List	Jan-07-12 12:00	30	Sep-20-11 10:18	a .
1112001-06 BIP-7 [Wate	r] Sampled Sep-13-11 1	1:17 Cent	ral	
SVOA Expanded List	Jan-07-12 12:00	30	Sep-20-11 11:17	
1112001-07 BIP-7, 9008-0	07 aqueous phase [Wate	r] Sample	ed Sep-13-11 11:17	
SVOA Expanded List	Jan-07-12 12:00	30	Sep-20-11 11:17	
1112001-08 BIP-7, 9008-0	07 oil phase [Soil] Samp	led Sep-1.	3-11 11:17 Central	-
SVOA Expanded List	Jan-07-12 12:00	30	Sep-27-11 11:17	

WORK ORDER

Printed: 12/12/2011 4:23:37PM

1112001

US EPA Region 5 Chicago Regional Laboratory

Client: RCRA, LCD, US EPA Region 5

Project Manager:

Angela Ockrassa

Project: Blue Island Phenols

Project Number:

[none]

Reviewed By

Date

			ojec ntin			Page	e														***********	****								29
(Ve	A	K	· lu	a.	-	2 6	i. i ,	12	PL	Zn (ای ار	/	L	E											12	_ \	3-1	1	
		1				1						'			-						-						CX			
	-,-	50	ile	arge,	1	įΛ	Ŝ	11	1	12	7	ja de la composition della com																		
						21						- <u>'</u> 711	Ž_																	
		N	/	l da	<u></u>	10								_	Bs	_	17 C	17)	- 0	, i	- 0	2	-0	/ <						
*****						1 3	10	7	3 j c	3	(-	د. د	1	/ - G	1	`/	ins varie	1		7		/								
10	11	AL	101			415	18		112	17	- []		7																	
				1				1		ł .	102		Α.																	
1.7	<u> </u>	112 :	201	<i>i</i> –	72				1	رب	/ 0	<u>'</u>										·								
											 								·										\neg	
		ļ				-					1																			
j		S	lì			-		-) d				1	1	u		7.	X				1			51		V 23	1		$\overline{\Lambda}$
	-	00				-	 '	1	12	1	<u> </u>			0 (7/1	0) <u>'</u>			1	心之			- Company		>C)	<u> </u>	<u>-</u> /
l	1	6 G J	ŧ						LP.					-	80	<i>S</i> ₩					,		122	احردا			50			
1	ì	0 0	1		1			1	P						160	*											7	i		
l	1	φυ, φυ	Ł		area.				LP.	1					210	*											<u>つ</u>			
1	1	00	1			1	\blacksquare	1						-	60	,**											0	l		
	17	00		5	;#		11.				و سرح	1	C. C.	-														-		
								,	10	ey ing	CC IV.	1262																		
17	i)	10	7 1		₹/ h										100	30											a c	0		
		02														00			200		50	20				,	50			
13		. O ?	Í	120	J. D.	ì				+ .					1	40				1							50			
1	-	3 (0) 0		110.3 000	, ,	1			1										ļ.											
			1			i				1													<u> </u>							
#		<u> </u>).) _	<u></u>	1		1	Vinc	Ĺ																<u> </u>		
×	1	<u> </u>	· C-~-	70	1 62		4	J.		1	reac			- 1.	1,0	Ì														
0	ررو	ال الد	7 1	- 1-)			+0		0.	1. 3	-71				P	2,2		100				El ac		1	1		ļ. —	
	<u>2.0</u>	18 CE	777	10	ere.C	2 _ د	ى زد√	,	10	1			1	· C	4 1 [5	1	4/7 [1266		م (0521	الات الحاج	وستيد ح ا	2-6		0-7	†	
1		0		1			-	L	i	-	2		7 -		0	1	0	5				•		-				-		
f	1(-)	41	6	778	(CC)	ه داد	ļ	1	_	1 2				1 6		11.	7, (5-ρ -ρ,									 			
Ĭ	>	È.	٠, ١٠	1.	c.L.		1	5			2 [30	1	1.2	1											-
1	<u> </u>	· W=	2	リベ	()	1, 10	##	Z Z	- j	- 1 -	<u> ا</u> م ز	1		5		ں د - سرجہ	PA	1	+		-		 				-	-		\vdash

		Read and Understood By	
Signed	Date	Signed	Date

Continued on Page

	•		•		•	
				•		
				·		
		·				
		•				
•				•		
			•			• · · · · · · · · · · · · · · · · · · ·
	•					
	·					
•						

Chicago Regional Laboratory

Soo South Clark Street, Chicago, IL 60003 Phone: (312)353-8370 Fax: (312)886-2591		
256 South Clark Street, Phone: (312)353-8370	Chicago, IL ouous	Fax:(312)886-2591
	556 South Clark Street,	Phone:(312)353-8370

Semivolatiles / non-volatiles in WATER extraction bench sheet

Analyses Included On This Benchsheet Batch Number: B112021

SVOA Expanded List

Surrogate 1: 1121312 Amount: 500uL

Spiking Solution(s) Added By:

Extraction Method: continuous liquid-liquid (x) solid-phase () separatory funnel ()

Analyst(s):

Date: 2 - 13-11

Extract concentration by: turbovap LV (/) turbovap 500 () N-evap ()

Dailogate 1. 1141314	JIM WILL SOOM	· Soom								
Sample Number	Source ID for duplicate or MS/MSD	LCS/MS Spike ID	LCS/MS Spike Amount (µL)	Sample Amount (mL)	Volume of Extract (mL)*	Dil 1	Dil 2	Dil 3	Final Volume of Extract (mL)**	Comments
1112001-01		k:		240	1					8
1112001-02	1			08	1					
1112001-03				165	1					
1112001-04				210	1	50×				
1112001-05				260	1	loox				
1112001-08				0.11424	100					
B112021-BLK1				1000	1					
B112021-BSD1		1121311	500	0001	1					2
B112021-BS1		1121311	500	1000	1					
* VOLUME AFTER CONCENTRATION; **AFTER ALL DILUTIONS	ONCENTRATION;	**AFTER ALL D	DILUTIONS	Reagent(s) Used:	NaCI() Na2SO	10 N P	VaOH (X)	1:1 H2SO4-	Reagent(s) Used: NaCl() Na2SO ₄₍₎ 10 N NaOH (\otimes) 1:1 H2SO ₄ -H2O (\otimes) Other (list):	
CLEANUP: GPC() OTHERS:) OTHERS:_			Reagent LIMS IDs or	or		4			
Internal standard LIMS ID: 1122103	IMS ID: 112	2103		manufacturer / part # / lot #	lot #	10N NoOH: LIMS 10 1121211	DI SALI	112121	101	
Calibration standard LIMS ID: 12/21/11	d LIMS ID:	1213100	1. 12/21/11	for all prepared solutions):	I I			and the second s		

Solvent(s) Used: Methylene Chloride (X) Acetone () Hexane () Methanol () Acetonitrile () Ethyl Acetate () Other (list) Solvent lot #s: (/MS / D 11 020 (-BCK1, -BS1, -BSD)

6-1090103 (-64,-65

hot water bath: 1590F = 70,5°C N-Evap water bath: 97°F = 36.1°C Turbo Vep LV was Batch Comments: recirculating Comments:

Page 1 of 1